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1 Introducing Decimals

We now have the tools needed to formally introduce decimal numbers. We
have seen infinite processes, negative exponents and the bases representation
theorem, which are the three tools we need.

We first introduced the bases representation theorem in lesson 11. The core
idea is that we can choose a base b, typically choosing b = 10, and represent any
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number as an expansion with powers of this base. For example, the number 243
is shorthand for 2 · 102 + 4 · 101 + 3 · 100. Specifically, we said the following:

Theorem 1.1 The bases representation theorem states that, for any given nat-
ural number a, there is a unique representation to base k such that

a = amkm + am−1k
m−1 + . . . + a2k

2 + a1k
1 + a0

such that every ai ∈W, every ai < k, either ai = 0 or ai > 0, and at least one
ai 6= 0.

Rewriting this with our series notation, we can state

Theorem 1.2 The bases representation theorem states that, for any given nat-
ural number a, there is a unique representation to base b such that

a =

m∑
i=0

aib
i

such that every ai ∈ W, every ai < b, either ai = 0 or ai > 0, and at least one
ai 6= 0.

We will now extend this idea to represent numbers other than integers
through the use of negative exponents and infinite processes by writing the
representation as

a =

+∞∑
i=−∞

aib
i

subject to the following:

1. ai ∈ Z∀ai

2. If a > 0, then ai ≥ 0∀ai. If a < 0, then ai ≤ 0∀ai.

3. If a 6= 0, then at least one ai 6= 0.

4. ai = 0∀ai if and only if a = 0.

The question now becomes a question of whether or not decimal represen-
tations are unique. The answer is “almost.” There is one representation that
is not unique. We will discover this as we develop an algorithm to convert our
rational numbers into decimal representation.
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2 Finite Decimals

2.1 1
10

Let us begin with one of the simplest rational numbers, namely 1
10 . How would

we write this as a decimal? Well, this is the same as 1·10−1, so the representation
is given by choosing a−1 = 1, ai = 0∀i 6= −1. This gives us the infinite series,
but it does not yet give us the representation. We cannot simply write down a
number that has infinitely many digits as . . . 0000001000000 . . . as we did before,
as the “place value” of each digit is ambiguous. We use the symbol “.” (which
we call a decimal point) to distinguish between the digits with i ≥ 0 and i < 0
in our expansion, so that the number becomes . . . 000000.1000000 . . . This is
still cumbersome, but at least we know what it is. By convention, we drop
all “leading” 0 digits before our decimal point, retaining the last one only if
all non-zero digits are after the decimal place. In this case, that reduces our
representation to 0.1000000 . . . which is better, but still rather long. A second
useful convention is to drop all trailing 0 digits after the final non-zero digit,
which leaves us with

1

10
= 0.1

as our representation.

2.2 1
2

Let us now examine the fraction 1
2 . How would we write this as a decimal

number? We can start by recognizing that 2 is a factor of 10, and rewrite 1
2 as

follows:
1

2
= 1 · 2−1 = 1 · 5 · 5−1 · 2−1 = 5 · 10−1

This then leaves us with
1

2
= 0.5

2.3 1
4

In the case of 1
4 , we can rewrite the fraction as 1

4 = 25
100 . In this case, the decimal

expansion is

1

4
=

25

100
=

20 + 5

100
=

20

100
+

5

100
=

2

10
+

5

100
= 0.25
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So far, we have restricted our attention to carefully chosen examples of the
form p

q where q = 2a5b for a, b ∈W. In these cases, if max (a, b) represents the

greater (maximum) of a and b, then our fraction p
q can always be written as

p · 2max(a,b)−a · 5max(a,b)−b

10max(a,b)

which is then easy to convert into decimal form. While this is useful for such spe-
cial cases, it does not help us generate arbitrary representations of any rational
number.

3 Arbitrary Decimals

Let us look at the rational number 1
3 now. 3 cannot be written in the form

3 = 2a5b for a, b ∈ W. As a result, we cannot convert the denominator into
the form 10m for any m ∈ W and our above representation fails. We need to
develop an algorithm that will allow us to convert any number into decimal
representation, regardless of the denominator, if this is going to work.

We begin with a simple question: is 1
3 > 1

10? If so, then we know1 a−1 6= 0.
What, then, is a−1? By our definition of decimal representation, we can also
define a−1 as the smallest integer which satisfies

a−1 + 1

10
>

1

3
>

a−1
10

Alternatively, we can define it such that

a−1 + 1

10
− 1

3
> 0

and
1

3
− a−1

10
> 0

We can find this systematically by taking our 1
3 and subtracting 1

10 , counting
the number of times we receive a positive result. Once we hit a negative result,
we have exceeded a−1. In this case,

1

3
− 1

10
=

10

30
− 3

30
=

7

30
> 0

7

30
− 1

10
=

7

30
− 3

30
=

4

30
> 0

4

30
− 1

10
=

4

30
− 3

30
=

1

30
> 0

1

30
− 1

10
=

1

30
− 3

30
=
−2

30
< 0

1We can see by inspection that 0 < 1
3
< 1, so we need not examine ai for i ≥ 0.
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so a−1 = 3.

The above process shows us that 1
3 = 3

10 + 1
30 . We can now find the a−2

such that
a−2 + 1

100
>

1

30
>

a−2
100

by a similar means. We can continue this process to whatever degree of accuracy
we choose, finding that ai = 3∀i < 0. Thus, this decimal representation never
ends, so we say that

1

3
= 0.333333333 . . . = 0.3

or “zero point three repeating.”2

3.1 Alternative Algorithm

An alternative (and possibly more convenient) algorithm also exists. Again, we
begin with 1

3 , which we know to be less than 1. We can find a−1 by taking 1
3 ·10,

and then read a−1 as the part greater than or equal to 1. For example,

1

3
· 10 =

1

3
· 10

1
=

10

3
= 3 +

1

3

Thus, a−1 = 3. To get a−2, we take the fractional part of our previous result
( 1
3 ) and multiply that by 10, taking the integer part of the answer for a−2 = 3.

This method makes it easier to see that ai = 3∀i < 0, as we always begin with
the fraction 1

3 .

For a more complicated example, let us examine the fraction 1
6 . Using this

algorithm, we see that

1

6
· 10 =

1

6
· 10

1
=

10

6
= 1 +

4

6

so that a−1 = 1. Continuing,

4

6
· 10 =

4

6
· 10

1
=

40

6
= 6 +

4

6

so that a−2 = 6. We are left with the same 4
6 that we started with, and so we

can readily see that ai = 6∀i ≤ −2, or

1

6
= 0.1666666 . . . = 0.16

2There are at least three conventions for repeating decimal notation. The one chosen here
is chosen by the author’s preference, in which a line appears over all repeating digits, even
if there is only one. In another convention, the line is used only for cases of at least two
repeating digits, such as 0.12121212 . . . = 0.12, but in the case of a single digit repeating, we
use a dot instead, such as 0.111111 . . . = 0.1̇. In a third convention, dots are placed above
every repeating digit, as in 0.123123123 . . . = 0.1̇2̇3̇. All conventions are valid.
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A more complicated example is 1
7 . For this, we have

1

7
· 10 =

1

7
· 10

1
=

10

7
= 1 +

3

7
3

7
· 10 =

3

7
· 10

1
=

30

7
= 4 +

2

7
2

7
· 10 =

2

7
· 10

1
=

20

7
= 2 +

6

7
6

7
· 10 =

6

7
· 10

1
=

60

7
= 8 +

4

7
4

7
· 10 =

4

7
· 10

1
=

40

7
= 5 +

5

7
5

7
· 10 =

5

7
· 10

1
=

50

7
= 7 +

1

7

Notice that we did not see a fraction repeat until we had calculated six digits,
at which point the first one finally repeated. Thus,

1

7
= 0.142857142857 . . . = 0.142857

This is because of our division algorithm. For |p| < q, each step of the algorithm
will produce a result of the form

p

q
· 10 = a +

b

q

where 0 ≤ |b| ≤ q. Thus, we have a maximum of q iterations before the decimal
representation either terminates (b = 0) or repeats (b takes on one of the q − 1
non-zero values we have already seen.)3

4 Converting Decimals to Fractions

We have seen how to convert rational numbers to decimals. We now must
convert decimals to rational numbers. As we shall soon see, there are only two
forms of decimal numbers which we can convert into rational numbers, and some
decimal numbers that cannot be converted.

4.1 Finite Decimals

Finite, or terminating decimals are the easiest to convert. These are decimals
for which ai = 0∀i < N for some value of N . A number such as 0.125 fits this

3Using techniques we are not yet prepared for, we can even prove that the number of
repeating digits in a repeating decimal is a factor of q − 1. In other words, if q = 7, then
q − 1 = 6 and we can have 1, 2, 3 or 6 repeating digits, but not 4 or 5. We will come back to
this proof when we are ready.
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form, but 0.3 does not. Using 0.125 as the example, we have two choices. One
is to begin with the full expansion and simplify, such as

1

10
+

2

100
+

5

1000
=

100

1000
+

20

1000
+

5

1000
=

125

1000

This is the “long” way. The easier way is to determine the denominator for
the last digit in the expansion (in this case, 1000 from the 5

1000 part and put all
digits that follow the decimal over this number immediately, as with

125

1000

It is conventional to write the fraction in “lowest terms.” In other words,
we determine the greatest common factor of both the numerator and the de-
nominator (possibly with the Euclidean algorithm from lesson 18) and remove
this factor from both the numerator and denominator. In this case, the greatest
common factor is 125, so we have

125

1000
=

125 · 1
125 · 8

=
1

8

as our final form.

Note the implications here: every finite or terminating decimal number can
be written as a fraction whose denominator is of the form 10n for some n. Thus,
we can only get finite or terminating decimals from rational numbers whose
denominators are of the form 2a5b when the fraction is in lowest terms. In all
other cases, we cannot produce this form, and the decimal will not terminate.
As we have seen above, it must then repeat. This is partly due to our choice of
base 10 for our basis representation. If we used the base 8 of octal instead, the
only terminating decimals would be those which had rational denominators of
the form 2a. In octal, 1

5 = 0.1463, for example.

4.2 Repeating Decimals

There are two types of repeating decimals to examine: those that repeat imme-
diately after the decimal point, such as 0.1, and those that repeat later, such as
0.16. We will deal with the first type now, and use what we learn in the second
type.

In lesson 26, we learned that a geometric sequence with the initial term a,
N total terms and the common ratio r has a sum given by

SN =
a
(
1− rN

)
1− r
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We can use this to develop a way to convert repeating decimals into fractions.
Note that, at this point, we are going to “cheat” with one of the rules of this
series. We have always deliberately avoided doing derivations or proofs based
on later lessons to continue developing things in order. In this case, we are going
to bend that rule and use a “limit” before they are defined in lesson 31. None
of the results developed in this section will be needed again until after lesson
31, so no logical inconsistencies will be created, but it will help the flow of the
text in this section and keep all material related to conversion between fractions
and decimals in a single lesson. Please forgive the author for bending this rule
on this occasion.

The result we are going to “borrow” from our section on limits is the follow-
ing: if |r| < 1, then

S∞ =
a

1− r

for an infinite series. This will be applied for the rest of this lesson, and proven
rigorously in lesson 31.

4.2.1 0.1

We examine 0.1. In this case, we have a single digit repeating immediately after
the decimal place. We can express this as a geometric series with a = r = 1

10 .
In other words,

0.1 =
1

10
+

(
1

10

)2

+

(
1

10

)3

+

(
1

10

)4

+ . . .

Using

S∞ =
a

1− r

we find

0.1 =
1
10

1− 1
10

=
1
10
9
10

=
1

9

Thus, our repeating decimal has been converted into a fraction.
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4.2.2 0.63

The case for 0.63 is similar. Again, we set this up as the sum of an infinite
sequence, but this time,4 a = 63

100 and r = 1
100 . Thus,

0.63 =
63
100

1− 1
100

=
63
100
99
100

=
63

99
=

7

11

In general, one may notice a pattern forming. In general, if we have n
repeating digits, then the fractional form of our decimal will have those n digits
over a number which is formed by the digit 9 appearing n times. We then reduce
the fraction to lowest terms.

4.2.3 0.83

The technique above is useful when all digits after the decimal repeat, but what
if they don’t? Then we must take another approach, as with 0.83. In this case,
the digit 8 does not repeat, but the 3 does. Let x = 0.83 to simplify notation.
We have no direct process for representing x as a fraction. We can, however,
represent 10x as a fraction quite nicely as an intermediate step that will bring
us the rest of the way. Observe:

x = 0.83

10x = 8.3

10x = 8 + 0.3

10x = 8 +
3

9

10x =
75

9

x =
75

90

x =
5

6

4.2.4 The General Case

Thus, to find the fraction representation of the decimal number x which has n
non-repeating digits before m repeating digits, begin with 10n · x and express
the remaining repeating decimal as a fraction over a denominator which is an

4If we have n repeating digits, our denominator must be 10n to use this technique.
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m digit number with every digit 9, add the integer part to form an improper
fraction, and then divide by 10n. It sounds more complicated than it really is.
One even has some flexibility in representation. For example, a masochist could
treat x = 0.1 as having 4 non-repeating digits 1 and 3 repeating digits 1, since
0.1111111 will appear exactly the same when expanded. This gives

10000x = 1111.111

10000x = 1111 + 0.111

10000x = 1111 +
111

999

10000x = 1111 +
1

9

10000x = 1111 +
1

9

10000x =
10000

9

x =
1

9

4.3 The Ambiguous Case: 0.9 = 1

There is one final example to look at: 0.9. This one is unusual, as it shows that
decimal representation of numbers is not unique.

Using the above formulation, we can see that the bases representation ex-
pansion of 0.9 is an infinite series with a = 9

10 and r = 1
10 . Using our sum

formulation,

0.9 =
9
10

1− 1
10

=
9
10
9
10

= 1

Thus, 0.9 = 1 and the decimal representation of that number is not unique.
Similarly, 0.249 = 0.25, 0.49 = 0.5 and so forth.

5 Summary

We have a few more pieces of the puzzle. Once again, if infinite processes are
permitted, then we now have a means to represent every rational number as
a decimal and every terminating or repeating decimal as a fraction. What we
don’t have is a means to express non-terminating, non-repeating decimals as
fractions. We will examine this puzzle more carefully in lesson 30.
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