
Math From Scratch Lesson 38:

Solving Quartics

W. Blaine Dowler

September 2, 2013

Contents

1 Defining Quartics 1

2 Finding Quartic Roots 2
2.1 Case 1: b = d = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Case 2: b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Case 3: The General Case . . . . . . . . . . . . . . . . . . . . . . 4

3 Next Lesson 5

1 Defining Quartics

A quartic polynomial is one in which the order of the polynomial is 4, so it can
be represented as

P (x) = ax4 + bx3 + cx2 + dx + e

where a, b, c, d, e ∈ Z and a 6= 0.

To find the roots of this equation, we look for a general method to either

1. solve ax4 + bx3 + cx2 + dx + e = 0 for all possible roots, or

2. extract a single root, allowing us to use polynomial long division to reduce
the remaining problem to a cubic equation, which we can already solve.

We will ultimately take the second approach. Again, we will start with
simpler cases.
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2 Finding Quartic Roots

2.1 Case 1: b = d = 0

This is perhaps the simplest case to deal with. When b = d = 0, our polynomial
reduces to

P (x) = ax4 + cx2 + e

With a substitution of y = x2, this is reduced to

P (x) = ay2 + cy + e

This is of quadratic form, so we can apply the techniques for quadratics
to solve for y, and then use those results to solve for x. These are known as
biquadratic forms.

2.2 Case 2: b = 0

We are going to solve problems of the type

0 = x4 + cx2 + dx + e

as our next special case. If a 6= 1, we can divide by a and produce a new set of
coefficients to continue the program.

We start by trying to make it look as simple as possible by moving the cx2

and dx terms to the other side of

x4 + cx2 + dx + e = 0

as
x4 + e = −dx− cx2

Now we use a technique similar to completing the square and add 2
√
ex2 to

both sides of the equation:

x4 + 2
√
ex2 + e = −dx− cx2 + 2

√
ex2

so we can now write this as(
x2 +

√
e
)2

=
(
2
√
e− c

)
x2 − dx
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Next comes the stroke of brilliance that I had to look up, since I was unable
to come up with it on my own. The left hand side is a perfect binomial square
in x, but the right hand side is not, as there are no constant terms. We can
create such a constant term, though. We add an additional term to the bracket
on the left hand side in the form of new variable y, and corresponding terms to
the right hand side:(

x2 +
√
e + y

)2
=

(
2
√
e− c

)
x2 − dx + 2

√
ey + y2 + 2x2y

As ugly as this looks, the left hand side is a perfect square. Thus, so is the
right hand side. In the context of a quadratic

ax2 + bx + c = 0

this would be a perfect square. In other words, we can rewrite it as

a

(
x +

b

2a

)2

= 0 = ax2 + bx +
b2

4a

which implies that b2

4a = c. This means that

b2

4a
= c

b2 = 4ac

b2 − 4ac = 0

This may seem familiar. It is the piece known as the discriminant of the
quadratic equation. We will eventually show that every polynomial has a dis-
criminant, and that such a discriminant is zero if and only if we have a repeated
root to our polynomial. In our case, we want to force our chosen y to be of a
form which ensures that the discriminant above is zero.

First, we rewrite the right hand side of our above expression to collect it as
a quadratic in x:(
2
√
e− c

)
x2− dx+ 2

√
ey + y2 + 2x2y =

(
2
√
e− c + 2y

)
x2− dx+

(
2
√
ey + y2

)
Now we form the quadratic and set it equal to zero:

(−d)
2 − 4

(
2
√
e− c + 2y

) (
2
√
ey + y2

)
= 0

d2 − 4
(
4ey + 2

√
ey2 − 2c

√
ey − cy2 + 4

√
ey2 + 2y3

)
= 0

8y3 +
(
24
√
e− 4c

)
y2 +

(
16e− 8

√
e
)
y − d2 = 0
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This is now a cubic equation in y, allowing us to solve for y. With that
solved, we can now substitute it back into(

x2 +
√
e + y

)2
=

(
2
√
e− c

)
x2 − dx + 2

√
ey + y2 + 2x2y

and transform the right hand side into something we can factor more easily. We
can then take the square root of both sides, transforming the entire equation
into a quadratic that is easy to solve. Actually completing the details with the
general form of y to find the general solution to x is remarkably cumbersome
and not particularly illuminating, so the details will be omitted.

2.3 Case 3: The General Case

We will continue taking the second option for finding the general case, finding
a way to reduce the general case of

P (x) = ax4 + bx3 + cx2 + dx + e

into a form with no bx3 term through a change of variables. As with cubic
equations, we can manage this with a change of variables of the form x = y+k.
This is equivalent to solving

a (y + k)
4

+ b (y + k)
3

+ c (y + k)
2

+ d (y + k) + e = 0

with a particular form of k. We can find this k by looking specifically at the
terms with y3. Expanding this in full gives us

ay4 + (4ak + b) y3 + (. . .) y2 + (. . .) y + (. . .) = 0

where we have omitted the lengthy coefficients of lower order y terms. The focus
is to solve for k:

4ak + b = 0

4ak = −b

k = − b

4a

Thus, a substitution of x = y − b
4a into

P (x) = ax4 + bx3 + cx2 + dx + e

will reduce the quartic into a form as in case 2. This is the last step needed to
solve any quartic polynomial.
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3 Next Lesson

In our next lesson, we will discard the axiom of inequality and open thing up
to far more possibilities.
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