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1 Purpose

In this lesson, we test the new sets of numbers that we have just defined (imag-
inary and complex) and determine which, if any, definitions of algebras they
define.

2 Different Algebras

Different algebras are defined by the axioms they satisfy. Specifically, we have
our axioms:

1. Closure under addition

2. Closure under multiplication
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3. Commutativity under addition

4. Commutativity under multiplication

5. Associativity under addition

6. Associativity under multiplication

7. Additive identity

8. Multiplicative identity

9. Inverses under addition

10. Inverses under multiplication

11. Distributive property

12. Completeness Axiom

13. Existence of i =
√
−1, which is distributive such that (a + b) i = ai + bi

and ai = ia.

We can have the following different algebras if the listed properties hold:

• Magma or groupoid: Either property 1 or 2 holds.

• Semigroup: Either 1 and 5 or 2 and 6 hold.

• Monoid: Either 1, 5 and 7 or 2, 6 and 8 hold.

• Group: Either 1, 5, 7 and 9 or 2, 6, 8 and 10 hold.

• Abelian Group: Either 1, 3, 5, 7 and 9 or 2, 4, 6, 8 and 10 hold.

• Semiring: Properties 1, 2, 5, 6, 7 and 8 hold.

• Near-ring: Properties 1, 2, 5, 6, 7, 8 and 9 hold.

• Ring: Properties 1, 2, 3, 5, 6, 7, 8 and 9 hold.

• Field: Properties 1-11 hold.

Which definitions, if any, do the imaginary and complex sets of numbers
satisfy?
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3 Imaginary Numbers

The imaginary numbers are the set of numbers I such that a ∈ I if and only if
a = bi where b ∈ R.

Let us test each of the first 11 properties individually.

1. By property 13, the definition of i, if ai ∈ I and bi ∈ I, then ai + bi =
(a + b) i and the imaginary numbers are closed under addition.

2. If ai ∈ I and bi ∈ I, then ai · bi = abi2 = −ab 6∈ I. Without closure under
multiplication, it is unlikely that any of the multiplication properties will
hold.

3. If ai ∈ I and bi ∈ I, then ai + bi = (a + b) i = (b + a) i = bi + ai using the
commutativity of addition of real numbers in the intermediate step.

4. If ai ∈ I and bi ∈ I, then ai · bi = aibi = iabi = ibai = biai = bi · ai
and commutativity under multiplication holds insofar as closure holds.
As multiplicative closure doesn’t hold, neither does this.

5. If ai ∈ I, bi ∈ I and ci ∈ I, then (ai + bi) + ci = ((a + b) i) i + ci =
((a + b) + c) i = (a + (b + c)) i = ai + (b + c) i = ai + (bi + ci) and asso-
ciativity under addition holds.

6. If ai ∈ I, bi ∈ I and ci ∈ I, then (ai · bi)·ci = ((a · b) i) i·ci = ((a · b) · c) i =
(a · (b · c)) i = ai · (b · c) i = ai · (bi · ci) and associativity under multiplica-
tion holds insofar as multiplicative closure holds, meaning not at all.

7. If ai ∈ I, then ai+0i = (a + 0) i = ai. Thus, 0i = 0 is the identity element
of the imaginary numbers under addition.

8. If ai ∈ I, then we need a bi ∈ I such that ai · bi = ai∀ai for the identity
property to hold. By the restrictions on the definition of bi ∈ I, we must
have b ∈ R. Yet, aibi = abi2 = −ab 6∈ I. Thus, we need to have −ab = ai
for every possible a, which only works if b = −i 6∈ R, so there is no
multiplicative identity in the set of imaginary numbers.

9. If ai ∈ I and bi ∈ I, then ai + bi = 0i if and only if b = −a. As the
only restrictions on a and b are that they are both real numbers, this is
satisfied, and additive inverses exist in the set of imaginary numbers.

10. As there is no multiplicative identity in the set of imaginary numbers, this
set cannot possibly have a multiplicative identity.

11. If ai ∈ I, bi ∈ I and ci ∈ I, then ai ·(bi + ci) = ai ·(b + c) i = a ·(b + c) i2 =
(a · b + a · c) i2 = (a · bi + a · ci) i = a · bii + a · cii = ai · bi + ai · ci and
the distributive property holds insofar as multiplicative closure holds. In
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other words, the numbers will look right, but the result is not an imaginary
number and is somewhat meaningless.

Thus, the imaginary numbers satisfy properties 1, 3, 5, 7 and 9 only. Thus,
the set of imaginary numbers can be treated as a magma or groupoid, a semi-
group, a monoid, a group and an Abelian group only. These may have their
applications, but as this algebra behaves identically to that of the real numbers
with an i attached, it is not a particularly useful revelation.

4 The Complex Numbers

The set of complex numbers C is defined such that z ∈ C if z = x+ iy, x, y ∈ R
and i is defined as per property 13 above. We now test each of properties 1-12
to see what type(s) of algebra this forms, if any. We must define what we mean
by addition and multiplication for these numbers. We define the addition of c =
a+bi ∈ C and z = x+yi ∈ C as c+z = (a + x)+(b + y) i and c ·z = (ax− by)+
(ay + bx) i. We will see that these definitions are consistent with the distributive
property and the definition that i2 = −1. In short, we have a choice: we may
arbitrarily choose these definitions of addition and multiplication, or we may
arbitrarily assume that the distributive property holds and then these simply
apply. Either way, we must make an assumption. As defining our operations is
part of all algebraic constructions on some level, that is the choice we make.

1. If c = a + bi ∈ C and z = x + yi ∈ C, then c + z = a + bi + x + yi =
a+ x+ bi+ yi = (a + x) + (b + y) i ∈ C, so the set of complex numbers is
closed under addition.

2. If c = a + bi ∈ C and z = x + yi ∈ C, then c · z = (a + bi) · (x + yi) =
ax + bxi + ayi + byi2 = (ax− by) + (bx + ay) i, so this is closed under
multiplication.

3. If c = a + bi ∈ C and z = x + yi ∈ C, then c + z = a + bi + x + yi =
a+x+ bi+yi = (a + x)+(b + y) i = (x + a)+(y + b) i = x+a+yi+ bi =
x + yi + a + bi = z + c, so commutativity holds.

4. If c = a + bi ∈ C and z = x + yi ∈ C, then c · z = (a + bi) · (x + yi) =
ax+ bxi+ayi+ byi2 = (ax− by) + (bx + ay) i = (xa− yb) + (xb + ya) i =
xa − yb + xbi + yai = xa + xbi + yai + ybi2 = (x + yi) · (a + bi) and the
set of complex numbers is commutative under multiplication.

5. If c = a + bi ∈ C, w = u + vi ∈ C and z = x + yi ∈ C, then c + (w + z) =
a + bi + (u + vi + x + yi) = a + bi + ((u + x) + (v + y) i) = a + (u + x) +
bi+ (v + y) i = (a + u) + x+ (b + v) i+ yi = (a + u) + (b + v) i+ x+ yi =
(c + w) + z and the complex numbers are associative under addition.
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6. If c = a + bi ∈ C, w = u + vi ∈ C and z = x + yi ∈ C, then c · (w · z) =
(a + bi) · ((u + vi) · (x + yi)) = (a + bi) · (ux + xvi + uyi− yv) = aux +
axvi+ auyi− ayv + buxi− bxv− buy− byvi = (aux− ayv − bxv − buy) +
(axv + auy + bux− byv) i = (au− bv)x + (av + bu) yi2 + (av + bu)x +
(au− bv) yi = (au− bv) (x + yi)+(av + bu) i (x + yi) = (au− bv + avi + bui) (x + yi) =(
au + avi + bui + bvi2

)
(x + yi) = ((a + bi) (u + vi)) (x + yi), which (fi-

nally) shows that the complex numbers are associative under multiplica-
tion.

7. If c = a+ bi ∈ C, then c+ 0 = c for 0 = 0 + 0i ∈ C, so we have an additive
identity.

8. If c = a + bi ∈ C, then c · 1 = (a + bi) · (1 + 0i) = a + bi + 0ai + 0bi2 =
a + bi = c, so we have a multiplicative identity under multiplication.

9. If c = a+bi ∈ C, then −c = −a−bi and c+(−c) = a+bi−a−bi = 0+0i = 0
and we have inverses under addition.

10. Verifying inverses under multiplication is more challenging. We need to
show that, for every possible c = a+bi, there is a matching z = x+yi such
that (a + bi)·(x + yi) = 1+0i. Now we simply need to find definitions of x
and y in terms of a and b that are always defined, regardless of a and b. By
our definition of multiplication, (a + bi)·(x + yi) = (ax− by)+(ay + bx) i.
Thus, we need to find x and y such that ax− by = 1 and ay+ bx = 0. Let
us start by isolating y in the latter equation, giving us y = − bx

a . If we now

substitute this into our former equation, we have ax− b
(
− bx

a

)
= 1. This

simplifies to ax + b2

a x = 1, or a2+b2

a x = 1, which leads us to x = a
a2+b2 .

Substituting this back into y = − bx
a gives y = − b

a2+b2 . These are defined

any time a2 + b2 6= 0, which is true for all cases save a = b = 0, which is
the same sole exception we had for the real numbers or any other algebraic
field. Thus, if c = a + bi ∈ C, then c−1 = 1

c ∈ C exists unless c = 0.

11. If c = a + bi ∈ C, w = u + vi ∈ C and z = x + yi ∈ C, then c · (w + z) =
(a + bi) · (u + vi + x + yi) = au + avi + ax + ayi + bui− bv + bxi− by =
(au− bv) + (av + bu) i + (ax− by) + (ay + bx) i = c · w + c · z, and the
Distributive Property holds.

12. If we define an infinite series of cn = an + bni termwise as
∑

cn =
∑

an +
i
∑

bn, then completeness is inherited from the fact that an, bn ∈ R.

Thus, the complex numbers are a complete set of numbers which satisfy all
of the axioms of the algebraic structures we have examined thus far.
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5 Conjugates, Denominators and Absolute Val-
ues

In the past, it has proven useful to denote multiplicative inverses not only with
negative exponents, but as denominators in fractions. Is it possible to main-
tain that same convenience here? If so, we would need to find a meaningful
interpretation of

c−1 =
1

a + bi

with i in the denominator. Thus far, we have only defined i in a complex number
in numerators, where we can distinguish between a “real” part a = < (c) and
the “imaginary” part b = = (c) such that c = < (c) + i= (c). We have a goal
in that we have found the general form of the multiplicative inverse of c, but it
would be nice to “derive” such a form for general use.

Let us start by defining the complex conjugate of c as the number c∗ =
a− bi = < (c)− i= (c), sometimes denoted c†. We use the former notation here,
as the latter is primarily used for a more general class of algebraic objects that
we are not ready to define yet. Rest assured, once we get to that definition,
you will be able to see (possibly because I will explicitly demonstrate it) that
inverses of complex numbers are really special cases of the more general class
of objects. We shall now demonstrate that these conjugates may be used to
transform an unclear denominator into a real denominator in a fraction with a
complex numerator. As we can break up a fraction according to terms being
added in its numerator, this will allow us to transform the result into something
more familiar.

We begin by reviewing the idea of equivalent fractions:

f

g
=

f

g
· h
h

=
fh

gh

In other words, fractions are defined in such a way that common factors
between numerator and denominator do not impact the value of the fraction.
Let us now look at the same notion in terms of complex numbers.

1

c
=

1

c
· c
∗

c∗
=

c∗

cc∗

Writing this with explicit substitution of c = a + bi and c = a− bi, we have

1

a + bi
=

1

a + bi
· a− bi

a− bi
=

a− bi

(a + bi) (a− bi)
=

a− bi

a2 + abi− abi− b2i2
=

a− bi

a2 + b2

This allows us a simple interpretation of imaginary and complex denomina-
tors. Thus, we won’t always apply the conjugate during the algebra, and may
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simply leave complex denominators as written, but we will always understand
what is intended by such a fraction.

Finally, we may also use the complex conjugates to define the absolute value
of a complex number. As you may recall, for a real number x, we have defined

|x| =
{

x, x ≥ 0
−x, x < 0

How would this definition work for complex numbers? The axiom of inequal-
ity no longer applies, so we can’t necessarily compare the numbers to 0 in this
sense. We will take a close look at the product cc∗ to help us in this quest. For
any c = a + bi, we have c∗ = a− bi, and thus

cc∗ = (a + bi) (a− bi) = a2 + abi− abi− b2i2 = a2 + b2 ∈ R

Thus, the combination cc∗ will always be a real number. Ideally, we would find
a way to map cc∗ into a real number in such a way that we can define the
absolute value in a way that the absolute value of real number x would have
the same absolute value as the complex number x + 0i. We already have the
framework in place, ready to be applied: |c| =

√
cc∗ =

√
a2 + b2. If b = 0, then

|c| = |a|, and if a = 0 then |c| = |b|. Thus, even if we treat the real numbers as
a subset of the complex numbers (as we could) we can define the absolute value
of a number as

|c| =
√
cc∗

and we can then do everything with it that we used to do before.

6 Next Lesson

We start to use the complex numbers to generalize the idea of numbers and
mathematical objects that can’t be placed on a number line, as our next step
towards graphing and algebra.
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