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1 Algebraically Closed Sets

We have discussed and defined polynomials before. It is possible to create
polynomials with coefficients from any algebraic field based on a set S of any
degree. We can then use these polynomials for a variety of studies. The set of
all polynomials whose coefficients are drawn from this set is denoted S[x]. This
allows us to explore another new concept.

A set of polynomials S[x] is algebraically closed if every polynomial in S[x]
has all of its roots in the set S. For example, let us define the set S = Z3,
which is the set of the integers modulo 3, as defined in volume 1 of this series. If
every polynomial of every degree has its roots in this set, then it is algebraically
closed. If we look only at polynomials of the form x − a with a ∈ S, then
every polynomial has a root in S[x]. If we allow any polynomial of any degree,
as we must do to be properly algebraically closed, then we come to a different
conclusion. If we look at all polynomials of degree 2, then we have the following
form for all polynomials in S[x]: ax2 + bx + c where a, b, c ∈ Z3. The elements
of Z3 are 0, 1 and 2, with the following addition and multiplication tables:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

1



· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

There are 18 possible degree 2 polynomials in this set:

1. x2 + 0x + 0

2. x2 + 0x + 1

3. x2 + 1x + 0

4. x2 + 1x + 1

5. x2 + 0x + 2

6. x2 + 2x + 0

7. x2 + 1x + 2

8. x2 + 2x + 1

9. x2 + 2x + 2

10. 2x2 + 0x + 0

11. 2x2 + 0x + 1

12. 2x2 + 1x + 0

13. 2x2 + 1x + 1

14. 2x2 + 0x + 2

15. 2x2 + 2x + 0

16. 2x2 + 1x + 2

17. 2x2 + 2x + 1

18. 2x2 + 2x + 2

We have 2 choices for a (as a 6= 0 or the polynomial would not be degree
2) but three choices each for b and c. Now let us examine all possibilities with
roots. If a polynomial can be factored with roots, then it will be of the form
a (x + d) (x + e), where there are, again, 2 choices for a and three choices each
for d and e. This sounds as though we’ll have the same total of 18 results, but
let us manually calculate them for this particular case.
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1. (x + 0) (x + 0) = x2 + 0x + 0

2. (x + 0) (x + 1) = x2 + 1x + 0

3. (x + 1) (x + 0) = x2 + 1x + 0

4. (x + 1) (x + 1) = x2 + 2x + 1

5. (x + 0) (x + 2) = x2 + 2x + 0

6. (x + 2) (x + 0) = x2 + 2x + 0

7. (x + 1) (x + 2) = x2 + 0x + 2

8. (x + 2) (x + 1) = x2 + 0x + 2

9. (x + 2) (x + 2) = x2 + 1x + 1

10. 2 (x + 0) (x + 0) = 2x2 + 0x + 0

11. 2 (x + 0) (x + 1) = 2x2 + 2x + 0

12. 2 (x + 1) (x + 0) = 2x2 + 2x + 0

13. 2 (x + 1) (x + 1) = 2x2 + 1x + 2

14. 2 (x + 0) (x + 2) = 2x2 + 1x + 0

15. 2 (x + 2) (x + 0) = 2x2 + 1x + 0

16. 2 (x + 1) (x + 2) = 2x2 + 0x + 1

17. 2 (x + 2) (x + 1) = 2x2 + 0x + 1

18. 2 (x + 2) (x + 2) = 2x2 + 2x + 2

Notice that this list has duplications on the right, as a result of the commu-
tative property. The polynomials created by (x + 0) (x + 1) and (x + 1) (x + 0)
are identical polynomials. Of the 18 possible polynomials from our first list, 6
cannot be produced by constructing a polynomial with the roots listed. These
six must not have roots, meaning that no value of x will cause the polynomial
to equal zero. To verify this, we can evaluate each of these six polynomials for
each of the three possible values of x, as seen in this table:

Polynomial x = 0 x = 1 x = 2

x2 + 0x + 1 1 2 2
x2 + 1x + 2 2 1 2
x2 + 2x + 2 2 2 1
2x2 + 0x + 2 2 1 1
2x2 + 2x + 1 1 2 1
2x2 + 1x + 1 1 1 2

These polynomials, which cannot

be expressed as the product of simpler polynomials, are called irreducible poly-
nomials.
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Thus, Z3[x] is not closed. If you examine the degree 2 polynomials based on
Z4[x], you will find that there are 48 possible polynomials, but only 19 of those
can actually be factored.

While these examples are illustrative, they are only specific examples. There
is, however, a generalization that can be made from this line of reasoning: S[x] is
not algebraically closed if S has a finite number of elements. For example, let us
assume that S has a finite number of elements n. There are either (n− 1)nd−1

or nd polynomials of degree d which can be constructed, with the former num-
ber representing the case where 0 ∈ S and the latter when it is not. When
constructing a list of all possible reducible polynomials, you will have options
that differ only by commuting the factors, and will therefore have duplicates
every single time. The only way for every polynomial to have roots and for S[x]
to be algebraically closed is if there is an infinite number of possibilities, so that
we do not “run out” of options.

2 If S is Infinite, is S[x] Algebraically Closed?

We now see that finite sets S cannot generation algebraically closed sets S[x].
Is having an infinite S enough? No, it is not. This is a very simple proof to do:
all we need to do is find even a single example of a set S which is infinite that
has even one polynomial in S[x] which does not have a root in S. For this, we
use S = Z, the set of all integers, and look at the polynomial 2x + 1. The root
of this polynomial can be found by starting with 2x + 1 = 0 and solving for x.

2x + 1 = 0

2x = −1

x = −1

2

As − 1
2 6∈ Z, we have proven that simply having an infinite S is not sufficient

to make S[x] algebraically closed. Let us now examine our other commonly used
sets to see if they are any different.

• Rational numbers Q: x2 − 2 = 0 has roots at x = ±
√

2, and is not
algebraically closed.

• Irrational numbers Q:
(√

2
)
x − 3

√
2 = 0 has a root at x = 3, and is not

algebraically closed.
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• Real numbers R: x2 + 1 = 0 has roots at x = ±i, and is not algebraically
closed.

• Imaginary numbers I:ix−i = 0 has a root at x = 1, and is not algebraically
closed.

This leaves only the complex numbers to examine. There is no immediate
and obvious example of a polynomial in C[x] which has roots outside C, so we
will need to take the more rigorous and formal approach of proving algebraically
whether or not C[x] is algebraically closed. In fact, C[x] is algebraically closed,
although we won’t be able to prove that until we establish some results from
calculus and analysis, and for that, we need to get to graphing. Thus, the proof
of this statement will have to wait.

3 Next Lesson

In our next lesson, we introduce vectors formally, and start working towards
graphing and calculus.
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