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1 Introducing Matrices

Now that we have established vectors, one-forms, and other objects that can be
defined as having multiple elements along a single column or row, it is not diffi-
cult to imagine a more complicated object which has multiple rows or columns.
When each row has the same number of elements, and each column has the
same number of elements, this object is a matrix.1 A column with n rows and
m columns is an n×m matrix. For example,

A =

 1 2
3 4
5 6


is a 3× 2 matrix, as it has 3 (horizontal) rows and 2 (vertical) columns. If you
wish to refer to a specific element, or number within, a matrix, then you use
two subscripts. Traditionally, the entire matrix is labeled with a capital Latin

1To the best of my knowledge, objects whose rows and columns differ in length have no
specific name and are unwieldy beasts with few, if any, practical usage.
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letter, such as A, while the elements are the corresponding lowercase letters
with subscripts listing first row and then column. In this example, a21 = 3, as

A =

 1 2
3 4
5 6

 =

 a11 a12
a21 a22
a31 a32



Three and higher dimensional objects are entirely possible, but are not con-
sidered matrices and will not be considered here. If aij = bij∀i, j then A = B.

2 Operations with Matrices

If matrices are going to be useful in any way, they must satisfy two criteria:

1. They must have applications to... something. It doesn’t matter what, and
it doesn’t need to be anything in the physical realm, but there needs to be
something you can do with matrices that you can’t do with other math.
(These are actually of vital importance to physics, engineering, computer
science, and more.)

2. They must have some sort of sensible rules for being manipulated. These
manipulations can be our classic operations or new ones, but we have to
be able to do something with them.

The rest of this section will deal with the second criterion. We will eventually
address both.

2.1 Addition and Subtraction

The definitions of addition and subtraction will be fairly intuitive, and very
similar to those used for vectors. We will require that any matrices being added
are of the same dimensions. Thus, if A is an n × m matrix and B is also an
n/timesm matrix, then we can define A + B = C if C is an n×m matrix such
that cij = aij + bij . For example, with

A =

 1 2
3 4
5 6

 , B =

 1 4
2 5
3 6
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then

A + B =

 1 2
3 4
5 6

+

 1 4
2 5
3 6

 =

 1 + 1 2 + 4
3 + 2 4 + 5
5 + 3 6 + 6

 =

 2 6
5 9
8 12

 = C

Similarly, with two identically shaped matrices A and B, we define A−B = C
as cij = aij − bij .

For simplicity, we define the 0 matrix as the matrix such that 0ij = 0∀i, j.
In this manner,

A

as expected.

2.2 Multiplication and Division

We have options for how we define multiplication and division. We could, for
example, define C = A × B as the matrix whose elements are given by cij =
aij · bij . In this case, we would then see that each element of a matrix operates
in complete isolation, so that every element of every matrix with subscripts,
say, 21, would “interact” with every other element with subscripts 21 and only
those in all other matrices. This would reduce the matrices to being nothing
more than n ×m different calculations being performed in a single dimension.
This sounds easy, but it is surprisingly inconvenient, as we’ll be missing out on
a few applications while really gaining nothing in the process. This intuitive
option works for addition, but we will have a far more versatile toolkit to work
with if we change the way we define multiplication.

2.2.1 Requirements and Definition

To be considered “multiplication,” an operation must satisfy the algebraic re-
quirements of multiplication that apply to a particular type of algebra. We will
define multiplication in a manner that, with matrices of a certain size or class
of sizes, satisfies all of the axioms for an algebraic ring. We can even multiply
matrices of different sizes, provided certain conditions are met.

If A is an n × m matrix, and B is a p × q matrix, then we can define
A · B = A × B if and only if m = p, such that C = A · B is defined by
cij =

∑m
k=1 aik · bkj . Note that this requires finite dimensional matrices, as we

must have finite sums for the axioms of algebra to hold. Infinite matrices are
possible, but will have entirely different properties than finite matrices, and will
be handled specifically later.
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With this definition, the number of columns in the matrix on the left has
to match the number of rows in the matrix on the right. This makes it not
only possible, but also means that matrices are not only not commutative in
all cases, but there are cases in which A × B is perfectly valid but B × A is
undefined. For example, if C = A × B then C23 is calculated by multiplying
each element from row 2 of A and column 3 of B, and summing those products
as follows:

A =

 1 2
3 4
5 6

 , B =

(
7 9 11
8 10 12

)
then

A×B =

 1 2
3 4
5 6

× ( 7 9 11
8 10 12

)

=

 1× 7 + 2× 8 1× 9 + 2× 10 1× 11 + 2× 12
3× 7 + 4× 8 3× 9 + 4× 10 3× 11 + 4× 12
5× 7 + 6× 8 5× 9 + 6× 10 5× 11 + 6× 12


=

 7 + 16 9 + 20 11 + 24
21 + 32 27 + 40 33 + 48
35 + 48 45 + 60 55 + 72


=

 23 29 35
53 67 81
83 105 127

 =

 23 29 35
53 67 81
83 105 127



In contrast,

B ×A =

(
7 9 11
8 10 12

)
×

 1 2
3 4
5 6


=

(
7× 1 + 9× 3 + 11× 5 7× 2 + 9× 4 + 11× 6
8× 1 + 10× 3 + 12× 5 8× 2 + 10× 4 + 12× 6

)
=

(
7 + 27 + 55 14 + 36 + 66
8 + 30 + 60 16 + 40 + 72

)
=

(
89 116
98 128

)

We can see that A× B 6= B × A, as the two matrices aren’t even the same
size, let alone having the same components. This also means that we are limited
in terms of setting up matrices with exponent operations. To have A2, we must
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be able to compute A×A. If A is an n×m matrix, then computing A×A only
makes sense if n = m and the matrix is square. It is with square matrices that
we are able to produce the most robust set of rules and opportunities. With
some other groundwork laid, we can start to look at division.

2.2.2 Identity

Let A by an arbitrary n × n matrix. Then I is the n × n identity matrix if
AI = IA = A. This will operate just as the number 1 operates in multiplication
over real numbers. If we are unable to define such an identity for all possible
matrices, then we will be unable to use our definition of multiplication for ring or
field algebras. (We could use addition to define an additive group, but doing so
again eliminates the need for a new object when a collection of existing objects
would suffice.)

Let us examine our original definition of multiplication: C = A ·B is defined
by cij =

∑m
k=1 aik · bkj . Thus, if we want cij = aij∀i, j, then we need to make

sure that B = I is carefully defined. The easiest definition of I (using uppercase
I for the component so it is not confused with the index i) is this:

Iij =

{
1, i = j
0, i 6= j

With this choice of I, our multiplication reduces to cij =
∑m

k=1 aik ·Ikj = aij
and our sum is ensured. We can confirm this as follows for an arbitrary 2 × 2
matrix A:

A× I =

(
a11 a12
a21 a22

)(
1 0
0 1

)
=

(
a11 + 0 0 + a12
a21 + 0 0 + a22

)
= A

I ×A =

(
1 0
0 1

)(
a11 a12
a21 a22

)
=

(
a11 + 0 a12 + 0
0 + a21 0 + a22

)
= A

Note that it is with the summation notation that we have formally proven
the form of the identity matrix. The explicit example above only proves the
general case for the 2 × 2 matrix. The appearance of the identity matrix is
consistent at all levels, with 1 along the diagonal joining the upper left corner
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and the lower right hand corner, and 0 for every other entry. For example,

I3×3 =

 1 0 0
0 1 0
0 0 1



I4×4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



In×n =


1 0
0 1

· · · 0 0
0 0

...
. . .

...
0 0
0 0

· · · 1 0
0 1


Now that we have an identity matrix, we can look at the possibility of

division.

2.2.3 Inverses

Division is always defined through multiplicative inverses. When we cannot
guarantee commutativity, then we say B and A are inverses if and only if AB =
BA = I. What options for division do we have with matrices? First, if A is
going to have an inverse, we need to determine the shape of A. Let us first
demonstrate that the inverse of A would need to be unique. Assume B is an
inverse to A from the left so that BA = I, and that C is inverse to the right so
that AC = I. We can then demonstrate that B = C as follows:

B = BI = BAC = IC = C

If A is a j × k matrix, B is a m× n matrix, C is a p× q matrix, and I is an
r × r matrix (as I must be square), then the multiplications BI, BA, AC and
IC imply that n = r, n = j, l = p and r = p. As we end up with B = C, we
also know that m = p and n = q. Combining all of these equalities, we see that
n = r = j = p = l = m = q, so all invertible matrices are square matrices.

Now that this is established, we can look at inverses in more detail. We
currently have no way to identify the inverse of a matrix, but if we start with a
simple 2× 2 matrix and look for a general solution, we may find a pattern.

We begin with

A =

(
a11 a12
a21 a22

)
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and

B =

(
b11 b12
b21 b22

)

B will be the inverse of A if

AB =

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b12 a21b12 + a22b22

)
=

(
1 0
0 1

)

This is equivalent to simultaneously solving these four equations:

a11b11 + a12b21 = 1 a11b12 + a12b22 = 0
a21b11 + a22b12 = 0 a21b12 + a22b22 = 1

which produces the following solution:

B =

( a22

a11a22−a12a21

−a21

a11a22−a12a21−a12

a11a22−a12a21

a11

a11a22−a12a21

)
=

1

a11a22 − a12a21

(
a22 −a21
−a12 a11

)
where we import the definition of scalar multiplication from our work in vectors.
This all seems fine and dandy, except there is a caveat: we can now find the
inverse of any 2 × 2 matrix for which a11a22 − a12a21 6= 0, or a11a22 6= a12a21.
Individual entries may be 0, as we see by the fact that the identity matrix is
its own inverse, but if this combination (which we will come to know as the
determinant many, many lessons down the road) is zero, then there is no hope
of inverting this matrix. This sounds like an obstacle, but counter-intuitively,
the most useful matrices in many practical applications are those which do not
have inverses.

3 Next Lesson

In our next lesson, we shall explore the idea that matrices can be roots of
polynomials in much the same way regular numbers are in the fields of real and
complex numbers. This will lead us to operators, eigenvalues, eigenvectors, and
ultimately, at long last, to graphing.
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