Math From Scratch Lesson 45: Basis Vectors

W. Blaine Dowler

June 30, 2014

Contents

1 Basis Vectors 1
1.1 Multiplicity of Bases 2
1.1.1 Case 1: $x_{1}=0$ 4
1.1.2 Case 2: $x_{1} \neq 0$ 4
1.1.3 The 3 dimensional case 5
2 Next Lesson 6

1 Basis Vectors

We have seen that vectors have different components. They can be added, and they can be multiplied, at least by scalars. For example,

$$
4\binom{1}{1}+3\binom{1}{-1}=\binom{7}{1}
$$

The question is simple: can we find a "recipe" that allows us to combine any possible vector out of a specific combination of vectors? Well, the answer is "yes," if we choose carefully.

For example, let

$$
\vec{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

be a vector with N components. The vectors defined by

$$
\begin{aligned}
\vec{e}_{1} & =\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
\vec{e}_{2} & =\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right) \\
& \vdots \\
\vec{e}_{N} & =\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

In other words, the i th component of $\vec{e}_{i}=1$, while every other component is 0 . Then,

$$
\vec{a}=\sum_{i=1}^{N} a_{i} \vec{e}_{i}
$$

Thus, there is a "trivial" way to create any possible vector \vec{a} using the set \vec{e}_{i} of basis vectors. Note that, if you have N components in your vectors then you must have N vectors \vec{e}_{i} in this formulation. Is that true in general? Can we have more or less vectors in the set and still create a basis of vectors to create any vector from? Can we make a set of basis vectors in other ways?

1.1 Multiplicity of Bases

Let us explore some of these questions with simple examples. For example, it is not difficult to show that

$$
\vec{v}=\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1}
$$

Is there another way to build

$$
\binom{a}{b}
$$

with different vectors? For example, can we use

$$
\vec{u}_{1}=\binom{1}{1}
$$

and

$$
\vec{u}_{2}=\binom{1}{-1}
$$

instead?
This would mean we'd have

$$
\vec{v}=c \vec{u}_{1}+d \vec{u}_{2}
$$

for some values of c and d. If we can find a way to calculate c and d, based solely on the values of the components of \vec{v}, a and b. With our definitions of \vec{u}_{1} and \vec{u}_{2}, we would need to solve $c+d=a$ and $c-d=b$ in such a way as to eliminate dependence of c on d and vice versa; we would need to have a formulation in which c depends solely on a and b, and d depends solely on a and b. Looking at the second equation, we find that $c=b+d$. If we substitute this expression into the first equation, we find that $(b+d)+d=a$, or

$$
d=\frac{a-b}{2}
$$

Rearranging our first equation into $c=a-d$ and substituting the above gives

$$
c=a-\frac{a-b}{2}=\frac{2 a-a+b}{2}=\frac{a+b}{2}
$$

Thus, we have found the combination of coefficients which will allow us to express any vector \vec{v} in terms of \vec{u}_{1} and \vec{u}_{2}. Can this be done with arbitrary basis vectors?

Let us try using arbitrary basis vectors

$$
\vec{x}=\binom{x_{1}}{x_{2}}
$$

and

$$
\vec{y}=\binom{y_{1}}{y_{2}}
$$

instead. Can we use these to build an arbitrary vector

$$
\vec{v}=\binom{a}{b}
$$

in a similar manner?
If we start with

$$
\vec{v}=\binom{a}{b}=e\binom{x_{1}}{x_{2}}+f\binom{y_{1}}{y_{2}}
$$

we find the conditions are

$$
e=\frac{a y_{2}-b y_{1}}{x_{1} y_{2}-x_{2} y_{1}}, f=\frac{b x_{1}-a x_{2}}{x_{1} y_{2}-x_{2} y_{1}}
$$

So, we cannot have just any solution. We can only find a solution such that $x_{1} y_{2}-x_{2} y_{1} \neq 0$, or $x_{1} y_{2} \neq x_{2} y_{1}$. Thus, so long as neither vector is $\overrightarrow{0}$, we'll be able to arbitrarily choose one of our vectors, and still have much (but not total) freedom to choose the last component. What happens if one vector is a multiple of the other? In other words, what if $y_{1}=a x_{1}$ and $y_{2}=a x_{2}$? This is strictly forbidden: this is equivalent to saying that $a x_{1} x_{2} \neq a x_{2} x_{1}$, which is an impossibility. Thus, we have one situation in which we cannot have a basis to assemble any vector: if $\vec{y}=a \vec{x}$. Are there any other situations in which we cannot have a solution? There are two cases to examine:

1.1.1 Case 1: $x_{1}=0$

If $x_{1}=0$, then we must have $x_{2} \neq 0$, or $x_{1} y_{2}-x_{2} y_{1}=0$. This leaves us with the following result:

$$
\begin{aligned}
x_{1} y_{2} & \neq x_{2} y_{1} \\
0 & \neq x_{2} y_{1} \\
0 & \neq y_{1}
\end{aligned}
$$

where the last step takes advantage of the fact that $x_{2} \neq 0$. So, if the system doesn't work, then the above equation is false, and $y_{1}=0$. This means that $y_{2}=a x_{2}$, since any two non-zero numbers are related by some scalar multiple. We can also say that $x_{1}=a y_{1}$ as both sides of the equation are 0 , so this is still our above condition: $\vec{y}=a \vec{x}$.

1.1.2 Case 2: $x_{1} \neq 0$

If $x_{1} \neq 0$, then we can say that $y_{1}=a x_{1}$, where a is allowed to be 0 . The condition for a successful set of basis vectors is now $x_{1} y_{2}-x_{2} y_{1}=x_{1} y_{2}-a x_{1} x_{2} \neq$ 0 , which can now be solved for y_{2} as follows:

$$
\begin{aligned}
x_{1} y_{2}-a x_{1} x_{2} & \neq 0 \\
x_{1} y_{2} & \neq a x_{1} x_{2} \\
y_{2} & \neq a x_{2}
\end{aligned}
$$

This is the same condition. Thus, in a vector space where vectors have only two components, any non-zero vectors which do not satisfy the condition $\vec{y}=a \vec{x}$ can be used as a basis for the vector space. What happens in higher dimensions?

1.1.3 The 3 dimensional case

Let us try to create

$$
\vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=a \vec{e}_{1}+b \vec{e}_{2}+c \vec{e}_{3}
$$

by using the vectors

$$
\vec{e}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \vec{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \vec{e}_{3}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

This gives us the conditions:

$$
v_{1}=a+c \quad v_{2}=a+b+2 c \quad v_{3}=b+c
$$

The first and third conditions give us ways to express both a and b in terms of c and the components of \vec{v}. Substitution gives us:

$$
\begin{aligned}
v_{2} & =\left(v_{1}-c\right)+\left(v_{3}-c\right)+2 c \\
& =v_{1}+v_{3}+2 c-2 c \\
& =v_{1}+v_{3}
\end{aligned}
$$

This does not, in any way, produce a means to determine a, b or c, as they are no longer involved in the equation. Instead, is places restrictions on v_{2} in terms of v_{1} and v_{3}. Thus, our arbitrary vector \vec{v} cannot be arbitrary, leaving us with a logical contradiction. We do not have $\vec{e}_{1}=d \vec{e}_{2}, \vec{e}_{1}=f \vec{e}_{3}$ or $\vec{e}_{2}=g \vec{e}_{3}$, so the condition we found in the two dimensional case wasn't strong enough.

By inspection, we can see that $\vec{e}_{3}=\vec{e}_{1}+\vec{e}_{2}$. This gives us a hint as to the condition we need: it is known as linear independence. A set of N vectors is linearly independent if and only if the only solution to

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{v}_{3}+a_{4} \vec{v}_{4}+\ldots+a_{N} \vec{v}_{N}=0
$$

is

$$
a_{1}=a_{2}=a_{3}=a_{4}=\ldots=a_{N}=0
$$

To verify this, we must first discuss the span of a set of vectors, and determine the exact number of solutions to a given set of linear equations. This will lead us into operators.

2 Next Lesson

Next, we examine the number of solutions possible for m equations with n unknowns, and look at how that impacts linear independence and vector bases. This will also give us a formal definition of a vector basis which we can use to replace our current, informal/intuitive definition.

