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1 Basis Vectors

We have seen that vectors have different components. They can be added, and
they can be multiplied, at least by scalars. For example,

(1) () =(1)

The question is simple: can we find a “recipe” that allows us to combine
any possible vector out of a specific combination of vectors? Well, the answer
is “yes,” if we choose carefully.
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be a vector with N components. The vectors defined by
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In other words, the ith component of €; = 1, while every other component
is 0. Then,
N
=
i=1

Thus, there is a “trivial” way to create any possible vector @ using the set
€; of basis vectors. Note that, if you have N components in your vectors then
you must have N vectors ¢€; in this formulation. Is that true in general? Can we
have more or less vectors in the set and still create a basis of vectors to create
any vector from? Can we make a set of basis vectors in other ways?

1.1 Multiplicity of Bases

Let us explore some of these questions with simple examples. For example, it is
not difficult to show that
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Is there another way to build
a
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with different vectors? For example, can we use
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instead?
This would mean we’d have
U = ctl] + diia

for some values of ¢ and d. If we can find a way to calculate ¢ and d, based solely
on the values of the components of #, a and b. With our definitions of #; and
iz, we would need to solve c+d = a and ¢ —d = b in such a way as to eliminate
dependence of ¢ on d and vice versa; we would need to have a formulation in
which ¢ depends solely on a and b, and d depends solely on a and b. Looking
at the second equation, we find that ¢ = b+ d. If we substitute this expression
into the first equation, we find that (b+ d) + d = a, or

a—>b

d:2

Rearranging our first equation into ¢ = a — d and substituting the above gives

a7b72afa+bia+b
2 2 2

c=a
Thus, we have found the combination of coefficients which will allow us to
express any vector ¥ in terms of #; and us. Can this be done with arbitrary

basis vectors?

Let us try using arbitrary basis vectors
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instead. Can we use these to build an arbitrary vector
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in a similar manner?

If we start with



we find the conditions are

ays — by _ bry —ams

)
T1Y2 — T2Y1 T1Y2 — T2Y1

So, we cannot have just any solution. We can only find a solution such that
T1y2 — xoy1 # 0, or z1ys # wxoy1. Thus, so long as neither vector is 6, we’ll
be able to arbitrarily choose one of our vectors, and still have much (but not
total) freedom to choose the last component. What happens if one vector is a
multiple of the other? In other words, what if y; = az; and ys = axs? This
is strictly forbidden: this is equivalent to saying that axixe # axsxy, which is
an impossibility. Thus, we have one situation in which we cannot have a basis
to assemble any vector: if ¥ = aZ. Are there any other situations in which we
cannot have a solution? There are two cases to examine:

1.1.1 Case 1: z; =0

If 1 = 0, then we must have xo # 0, or x1ys — z2y; = 0. This leaves us with
the following result:

T1Y2 7'5 T2Y1
0 # xa2uy1
0 #

where the last step takes advantage of the fact that x4 # 0. So, if the system
doesn’t work, then the above equation is false, and y; = 0. This means that
Y2 = axs, since any two non-zero numbers are related by some scalar multiple.
We can also say that 1 = ay; as both sides of the equation are 0, so this is still
our above condition: § = aZ.

1.1.2 Case 2: 1 #0

If 1 # 0, then we can say that y; = ax;, where a is allowed to be 0. The
condition for a successful set of basis vectors is now x1ys —x2y; = r1y2 —ax1x9 #
0, which can now be solved for ys as follows:

Ty —arizy # 0
T1Ys F axi1To
Y2 #F axo
This is the same condition. Thus, in a vector space where vectors have only two

components, any non-zero vectors which do not satisfy the condition i = aZ can
be used as a basis for the vector space. What happens in higher dimensions?



1.1.3 The 3 dimensional case

Let us try to create

U1
v = (%) = aé’l —+ bgg —+ 053
U3
by using the vectors
1 0 1
=11 er=11 es=| 2
0 1 1

This gives us the conditions:

vv=a+c vy=a+b+2c v3=b+c

The first and third conditions give us ways to express both a and b in terms
of ¢ and the components of ¢. Substitution gives us:

vg = (v1—c¢)+ (vs—c)+2
= vy +v3+2c—2c

= v +us

This does not, in any way, produce a means to determine a, b or ¢, as they are
no longer involved in the equation. Instead, is places restrictions on v, in terms
of v; and vs. Thus, our arbitrary vector ¢’ cannot be arbitrary, leaving us with
a logical contradiction. We do not have €) = dés, €1 = fé3 or €5 = g€3, so the
condition we found in the two dimensional case wasn’t strong enough.

By inspection, we can see that €5 = €; + €. This gives us a hint as to the
condition we need: it is known as linear independence. A set of N vectors is
linearly independent if and only if the only solution to

a101 + agUs + agts + aats + ... +anty =0
is

al=ay=a3=a4=...=any =0

To verify this, we must first discuss the span of a set of vectors, and determine
the exact number of solutions to a given set of linear equations. This will lead
us into operators.



2 Next Lesson

Next, we examine the number of solutions possible for m equations with n
unknowns, and look at how that impacts linear independence and vector bases.
This will also give us a formal definition of a vector basis which we can use to
replace our current, informal/intuitive definition.
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