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1 Basis Vectors

We have seen that vectors have different components. They can be added, and
they can be multiplied, at least by scalars. For example,

4

(
1
1

)
+ 3

(
1
−1

)
=

(
7
1

)

The question is simple: can we find a “recipe” that allows us to combine
any possible vector out of a specific combination of vectors? Well, the answer
is “yes,” if we choose carefully.

For example, let

~a =


a1
a2
...

aN
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be a vector with N components. The vectors defined by

~e1 =


1
0
...
0



~e2 =


0
1
...
0


...

~eN =


0
0
...
1


In other words, the ith component of ~ei = 1, while every other component

is 0. Then,

~a =

N∑
i=1

ai~ei

Thus, there is a “trivial” way to create any possible vector ~a using the set
~ei of basis vectors. Note that, if you have N components in your vectors then
you must have N vectors ~ei in this formulation. Is that true in general? Can we
have more or less vectors in the set and still create a basis of vectors to create
any vector from? Can we make a set of basis vectors in other ways?

1.1 Multiplicity of Bases

Let us explore some of these questions with simple examples. For example, it is
not difficult to show that

~v =

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)
Is there another way to build (

a
b

)
with different vectors? For example, can we use

~u1 =

(
1
1

)
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and

~u2 =

(
1
−1

)
instead?

This would mean we’d have

~v = c~u1 + d~u2

for some values of c and d. If we can find a way to calculate c and d, based solely
on the values of the components of ~v, a and b. With our definitions of ~u1 and
~u2, we would need to solve c+d = a and c−d = b in such a way as to eliminate
dependence of c on d and vice versa; we would need to have a formulation in
which c depends solely on a and b, and d depends solely on a and b. Looking
at the second equation, we find that c = b + d. If we substitute this expression
into the first equation, we find that (b + d) + d = a, or

d =
a− b

2

Rearranging our first equation into c = a− d and substituting the above gives

c = a− a− b

2
=

2a− a + b

2
=

a + b

2

Thus, we have found the combination of coefficients which will allow us to
express any vector ~v in terms of ~u1 and ~u2. Can this be done with arbitrary
basis vectors?

Let us try using arbitrary basis vectors

~x =

(
x1

x2

)
and

~y =

(
y1
y2

)
instead. Can we use these to build an arbitrary vector

~v =

(
a
b

)
in a similar manner?

If we start with

~v =

(
a
b

)
= e

(
x1

x2

)
+ f

(
y1
y2

)
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we find the conditions are

e =
ay2 − by1

x1y2 − x2y1
, f =

bx1 − ax2

x1y2 − x2y1

So, we cannot have just any solution. We can only find a solution such that
x1y2 − x2y1 6= 0, or x1y2 6= x2y1. Thus, so long as neither vector is ~0, we’ll
be able to arbitrarily choose one of our vectors, and still have much (but not
total) freedom to choose the last component. What happens if one vector is a
multiple of the other? In other words, what if y1 = ax1 and y2 = ax2? This
is strictly forbidden: this is equivalent to saying that ax1x2 6= ax2x1, which is
an impossibility. Thus, we have one situation in which we cannot have a basis
to assemble any vector: if ~y = a~x. Are there any other situations in which we
cannot have a solution? There are two cases to examine:

1.1.1 Case 1: x1 = 0

If x1 = 0, then we must have x2 6= 0, or x1y2 − x2y1 = 0. This leaves us with
the following result:

x1y2 6= x2y1

0 6= x2y1

0 6= y1

where the last step takes advantage of the fact that x2 6= 0. So, if the system
doesn’t work, then the above equation is false, and y1 = 0. This means that
y2 = ax2, since any two non-zero numbers are related by some scalar multiple.
We can also say that x1 = ay1 as both sides of the equation are 0, so this is still
our above condition: ~y = a~x.

1.1.2 Case 2: x1 6= 0

If x1 6= 0, then we can say that y1 = ax1, where a is allowed to be 0. The
condition for a successful set of basis vectors is now x1y2−x2y1 = x1y2−ax1x2 6=
0, which can now be solved for y2 as follows:

x1y2 − ax1x2 6= 0

x1y2 6= ax1x2

y2 6= ax2

This is the same condition. Thus, in a vector space where vectors have only two
components, any non-zero vectors which do not satisfy the condition ~y = a~x can
be used as a basis for the vector space. What happens in higher dimensions?
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1.1.3 The 3 dimensional case

Let us try to create

~v =

 v1
v2
v3

 = a~e1 + b~e2 + c~e3

by using the vectors

~e1 =

 1
1
0

 ~e2 =

 0
1
1

 ~e3 =

 1
2
1



This gives us the conditions:

v1 = a + c v2 = a + b + 2c v3 = b + c

The first and third conditions give us ways to express both a and b in terms
of c and the components of ~v. Substitution gives us:

v2 = (v1 − c) + (v3 − c) + 2c

= v1 + v3 + 2c− 2c

= v1 + v3

This does not, in any way, produce a means to determine a, b or c, as they are
no longer involved in the equation. Instead, is places restrictions on v2 in terms
of v1 and v3. Thus, our arbitrary vector ~v cannot be arbitrary, leaving us with
a logical contradiction. We do not have ~e1 = d~e2, ~e1 = f~e3 or ~e2 = g~e3, so the
condition we found in the two dimensional case wasn’t strong enough.

By inspection, we can see that ~e3 = ~e1 + ~e2. This gives us a hint as to the
condition we need: it is known as linear independence. A set of N vectors is
linearly independent if and only if the only solution to

a1~v1 + a2~v2 + a3~v3 + a4~v4 + . . . + aN~vN = 0

is
a1 = a2 = a3 = a4 = . . . = aN = 0

To verify this, we must first discuss the span of a set of vectors, and determine
the exact number of solutions to a given set of linear equations. This will lead
us into operators.
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2 Next Lesson

Next, we examine the number of solutions possible for m equations with n
unknowns, and look at how that impacts linear independence and vector bases.
This will also give us a formal definition of a vector basis which we can use to
replace our current, informal/intuitive definition.
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