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Abstract

This document details exactly how to convert any repeating decimal
into its fractional form, and explains exactly why the method works.

1 The Algorithm

First, some notation. The overline notation will be used to represent the re-
peating portion of a decimal. For example,

12.343434343434 . . . = 12.34

Now, the algorithm for turning these repeating decimals into fractions is
fairly straightforward. The explanation for it requires math generally left for
High School, which will come later. Elementary school students can learn how
to convert, even if they can’t immediately be shown why it works.

When the repeating digits start right at the decimal, such as with 0.3, then
we start by counting the number of digits that repeat. In 0.3, only one digit
(the 3) repeats. In 0.34, two digits repeat (the 3 and 4.) We write the fractions
by writing the repeating digit(s) over a matching number of 9s, remembering to
reduce the fraction into lowest terms afterwards. So, for example,

0.3 =
3
9

=
1
3

0.34 =
34
99

0.123456789 =
123456789
999999999

=
13717421
111111111

0.012 =
12
999

=
4

333

Notice in the fourth example that we have three 9s in the denominator
instead of just two. The 0 that repeats counts.

Things get trickier when the repeating digits don’t start repeating immedi-
ately after the decimal. For example, if you have 0.166666666 . . . = 0.16, then
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the 1 that appears after the decimal is not involved in the repetitions. We need
to have all repeating digits start repeating right after the decimal for the above
trick to work. If the decimal is followed by one digit that doesn’t repeat, then
10 times the number will start repeating immediately:

10× 0.16 = 1.6

If you have four non-repeating digits after the decimal, than 10,000 times that
number will start repeating right after the decimal:

10, 000× 0.11116 = 1111.6

If we multiply our decimal to turn the number into a decimal we can work
with, convert it into a fraction, and then divide by the multiple of 10 we origi-
nally multiplied by (10 or 10,000 above) then we can convert our original number
into a fraction. We will need to remember to convert any mixed numerals into
improper fractions before we divide.

10× 0.16 = 1.6

10× 0.16 = 1
6
9

10× 0.16 = 1
2
3

=
5
3

0.16 =
5
3
÷ 10

0.16 =
5
30

0.16 =
1
6

Similarly,

10, 000× 0.11116 = 1111.6

10, 000× 0.11116 = 1111
6
9

10, 000× 0.11116 = 1111
2
3

=
3335

3

0.11116 =
3335

3
÷ 10, 000

0.11116 =
3335

30, 000

0.11116 =
667
6000

With these two skills, we can now convert any repeating decimal into a
fraction.
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2 The Explanation

We use standard notation for sums. For example,

21 + 22 + 23 + . . . + 210 =
10∑

i=1

2i

The
∑

symbol (a capital sigma from the Greek alphabet) means we will
take the sum of a series of similar terms. Each term can be written in the form
2i, where i ranges from 1 (below the

∑
) to 10 (above the

∑
). The

∑
notation

always means taking the number below the symbol to the number above the
symbol in steps of one number at a time. The variables, starting points, and
ending points may change, which is why they are included in the notation.

We start by deriving a general result for one particular type of sum. In most
high school curricula, student learn about geometric sequences and series. A
sequence is a series of numbers that have some sort of connection or relationship.
A geometric sequence is one in which the relationship is defined by a common
ratio r. So, if the sequence is 1, 2, 4, 8, 16, ..., then the common ratio is 2 because
2÷ 1 = 2, 4÷ 2 = 2, 8÷ 4 = 2, 16÷ 8 = 2, .... If the common ratio is less than 1
(such as 1

2 ,) then the numbers in the sequence get smaller each time.
A series is the sum of the terms in a sequence. So, if the first four terms in

a sequence are 1, 2, 4 and 8, then the first four terms in the series would be 1,
3, 7 and 15 because 1 = 1, 1 + 2 = 3, 1 + 2 + 4 = 7, and 1 + 2 + 4 + 8 = 15. We
are almost at the stage to connect these ideas to repeating decimals.

High school students also see a formula that gives the value of any term in
the series if the underlying sequence is understood. Just as some people prefer
to cook with a microwave, others prefer to take the time cook from scratch.
If you’re a ”cook from the microwave” kind of mathematician, jump ahead to
the finished (and numbered) equation. If not, keep reading and we’ll derive the
thing from scratch.

Let’s start by finding a way to describe every term in a sequence. We’ll need
some notation: the nth term in a sequence is denoted tn, so the first term is
t1, the second term is t2, and so forth. The first term can also be represented
by the letter a, and usually is. The common ratio between consecutive terms
is r as above, which leaves n to denote the number of terms we are into the
sequence. For example, if our sequence is 1, 2, 4, 8, ... as above, then a = 1 and
r = 2 for every term in the sequence. If n = 1, we have tn = 1. If n = 2, then
tn = 2. If n = 3, then tn = 4, and so forth. We need to construct a formula
that gives the correct tn when given a, r, and n.

We start by recognizing that the difference between consecutive terms is a
multiplied factor of r. We need to make sure that tn = a when n = 1, and that
each increment of n by 1 introduces another factor of r so that t2 = ar, t3 = r2,
and so forth. If we recall that r0 = 1 for any value of r, then we can build our
formula by pure logic:

tn = arn−1

3



We can denote each term in a series by Sn. This means that S1 = t1,
S2 = t1 + t2, S3 = t1 + t2 + t3, and so forth. We now need to find a way to
calculate this. We could just do it by hand, which is not a big deal for, say, S2.
However, if we need S12,345, we’re going to want a more efficient technique.

We start by using the summation notation introduced at the start of this
section. This gives us

Sn =
n∑

i=1

arn−1

It’s a more compact way to write the series down, but it’s not any more
useful when calculating the value. The next step is the one that requires the
intuitive leap not expected of high school students: we multiply by 1 − r on
both sides of the equation. This leads to the following:

(1− r) Sn = (1− r)
n∑

i=1

arn−1

If we apply the distributive property of multiplication1, first in multiplying
out the (1− r) and then by multiplying r through the sum on the right, we get

(1− r) Sn =
n∑

i=1

arn−1 − r

n∑

i=1

arn−1

=
n∑

i=1

arn−1 −
n∑

i=1

arn

Let’s take a good look at the two summation terms on the right in that
second line. Both sums have n terms, each differing only by a factor of r.
The first expands to a + ar + ar2 + . . . + arn1 , while the second expands to
ar + ar2 + . . . + arn−1 + arn. The first term in the first expansion does not
appear in the second, but every subsequent term does. Similarly, every term in
the second expansion appears in the first, except for the final arn term.

These series are being subtracted from each other. Those two unique terms
will be the only terms that do not cancel out in the subtraction. In other words,

(1− r)Sn = a− arn = a (1− rn)

We can now isolate Sn by dividing both sides by the (1− r) term that we
added arbitrarily at the start of this calculation. The final result is this:

Sn =
a (1− rn)
(1− r)

(1)

This is the expression given in most high schools, or the equivalent

Sn =
a (rn − 1)
(r − 1)

1a (b + c) = ab + ac
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which you can get by multiplying the fraction by −1
−1 .

We need only two more results before we can truly explanation why the
above method works to convert repeating decimals into fractions. We need to
find out what happens if the sequence never ends. If n goes to infinity, we may
have a problem. rn gets larger and larger any time r > 1. If r = 1, then
our entire process is invalidated by the division by r − 1. (However, if r = 1,
then every term in the sequence is identical and our series becomes na, which
is easier to deal with.) If 0 < r < 1, then we have something to work with: if
r is between 0 and 1 then rn gets closer and closer to 0 as n increases, until
we can use the advanced calculus based technique called “taking the limit” to
say that limn→∞ rn = 0. In practical terms, when the sequence never ends and
0 < r < 1, we can just simplify this to rn = 0. With this, we have

S∞ =
a

(1− r)

Our final result is for the special case where a = r = 1
x , where x is any

number greater than 1. If we substitute these values into the above expression,
we get

S∞ =
1
x(

1− 1
x

) =
1

x− 1

Now we learn why all this stuff about infinite, unending series is useful. Let’s
go back to our repeating decimals, and recall the meanings of the different place
values. We are used to breaking things up with place values one digit at a time,
so that we have the following:

0.34 = 0.343434... =
3
10

+
4

100
+

3
1000

+
4

10000
+ . . .

Instead, however, we can break them up into larger blocks according to the
portion that repeats:

0.34 =
34
100

+
34

10000
+

34
1000000

+ . . . =
34
100

+
34

1002
+

34
1003

+ . . .

We can write this repeating decimal as a multiple of an infinite series where
a = r = 1

100 :

0.34 = 34
∞∑

i=1

(
1

100

)(
1

100

)i−1

Applying our above result for the special case of a = r = 1
x , we see that

0.34 = 34
1

100− 1
=

34
99

As every repeating fraction can be expressed as the numerator multiplied
by an infinite series where a = r = 1

10m where m is the number of digits that
repeat, we can apply the result in all cases, and the above algorithm works.
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