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1 What Is Energy?

One of the quantities that physicists find most useful is energy. It is often
difficult to define for new students, due in large part to the fact that it is an
intangible quantity that you cannot see, touch, taste or smell. The formal
definition is often “energy is the ability to do work,” which seems clear and
straightforward until one is asked to define “work” in the scientific sense.

An alternative definition of energy is “the ability to cause changes in motion
or position.” From a scientific perspective, this is equivalent to the first defini-
tion, but it reduces the terminology to that which is intuitive for new students.
There are different types of energy in the world, though we will only deal with
two of them in this series.

1.1 Kinetic Energy

The type of energy that is often the easiest for students to accept is kinetic
energy, or energy of motion. If an object is in motion, its own position is
constantly changing. It also has the potential to cause changes in motion to
other bodies through collisions.

In the Newtonian view, kinetic energy can be calculated based solely on the
mass and speed of an object. If two objects with different mass travel at the
same speed, then the object with greater mass has greater kinetic energy. If
two objects with the same mass travel at different speeds, then the one with the
greater speed has the greater kinetic energy. Moreover, the speed of the object
has significantly greater impact than the mass. (If you double an object’s mass
without changing its speed, you double its kinetic energy. If you double its
speed, you more than double its kinetic energy.)

1.2 Potential Energy

The second major type of energy is potential energy. This is a little harder
to see, as there is nothing visibly moving or altered in any way as a result
of obtaining potential energy. This energy can be “released” and turned into
kinetic energy in one form or another. For example, a book on a shelf has
gravitational potential energy: the book might fall, gaining speed and kinetic
energy as it approaches the floor. A book on a lower shelf has less potential
energy, as it cannot fall as far and will be traveling at a lower speed when it
hits the ground.
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Potential energy is a consideration when there is some sort of outside field
or force that can drive changes in motion, such as gravity. As such, further
discussion will be saved for the general theory of relativity. The variables one
needs to describe potential energy depend upon the source and nature of the
outside force or field.

2 What Is Momentum?

Momentum is a term that is commonly used in day to day speech in a fashion
that differs from its scientific meaning. When people talk about momentum
in the colloquial sense, they typically mean something is in motion and hard
to stop. This usage is closer to the word “inertia” than momentum. It is
inertia that determines the resistance to accelerations and changes in motion.
Momentum, in the Newtonian view, is the product of mass and velocity.1 In
Newton’s day, it was referred to as the “quantity of motion.” Momentum is
always conserved in a collision, meaning that the total momentum that goes
into a collision is the same as the total momentum that comes after. (Again,
direction matters; two vehicles meeting head on can turn into a stationary wreck
immediately after collision because momentum in one direction, say North, can
be canceled out by momentum in the opposite direction, South.)

3 How Are They Connected?

Kinetic energy and momentum can both be calculated using the same two pieces
of information: the mass of the body in motion, and the velocity of the body in
motion. Although they are not identical quantities,2 the fact that they depend
solely on the same two variables begs the question about whether or not the
two are related.

3.1 The Newtonian View

In the Newtonian view, energy and momentum are connected through forces.
When a force is applied to a object at rest, it accelerates to some velocity. The
force applies over a period of time, during which the object travels some distance.
Assuming the object is in space, so we don’t have to worry about friction and

1It uses velocity, and not speed, because direction matters.
2They cannot be the same: direction matters to momentum but not kinetic energy, which

is a significant difference on the conceptual side.
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other factors, allowing the entire force to apply to accelerating the object in
the exact direction of the force, then we can calculate both the energy and
momentum using simple and similar math. We will also assume that the force
is uniform, meaning it applies with the same strength and in the same direction
the entire time it is applied. To calculate the energy of the object, one multiplies
the force by the distance it has traveled. To calculate the momentum of the
object, one multiplies the force by the time elapsed during the acceleration.3

3.2 The Relativistic View

In the relativistic view, there are a few changes that need to be made to these
concepts. The first and foremost idea that needs to be explored is whether or
not there is an upper limit to either quantity. After all, the universe has a speed
limit in the speed of light. If these quantities depend on the speed of an object,
then one would tend to think that there could be an upper limit to either or
both in turn.

The relationship between the two quantities, as force applied along different
directions (space or time), still applies in relativity. In that case, conceptually,
we see that there should be no upper limit to either quantity: one can continually
apply a force to an object, regardless of how much time elapses or distance is
traveled. So, how do we obtain unlimited energy and momentum with a limited
speed?

The answers lies in the fact that we have misidentified the variables involved.
As we mentioned in lesson two, Newton originally recognized inertia as a key
quantity, and then proposed that the mass and inertia of an object were one and
the same quantity. Although he couldn’t possibly have realized this at the time,
mass and inertia are not, in fact, the same. The inertia of an object increases as
its speed increases. This increase is almost imperceptible at the speeds that we
see in our everyday experiences, but it is unmistakeable at higher speeds. As an
object gets closer to the speed of light, its inertia increases incredibly rapidly,
ensuring that no amount of energy or momentum will carry the body above
the speed of light. In several of the cases in which we used mass in Newtonian
mechanics, we should have used inertia as Newton originally proposed. This
concept was so counter intuitive, and the notion of equality between mass and
inertia so widely accepted, that when this difficulty was first noticed physicists
incorrectly assumed that the mass of an object was increasing, and the quantities
were named as such. The mass was referred to as rest mass and the inertia
was referred to as relativistic mass. Although the error in these terms is now
understood, they were in use for so long that they still appear in much of the
literature on the subject.

3If the force is not uniform, some adjustments need to be made. Instead of simple multi-
plication, we use calculus to integrate the force with respect to the other variable.
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The next question pertains primarily to momentum: with momentum, direc-
tion matters, so what quantity appears as the time component of momentum?
We now have four directions that need to be described when dealing with quan-
tities that use direction at all. To discover this component, we begin with
Newton’s definition of momentum as the product of inertia and velocity. We
take our four dimensional velocity and multiply it by the inertia of an object.
What we find in the time component of the result is startling: it is the kinetic
energy of the object, with an additional term added: mc2, where m is the mass
of the object and c is the speed of light.

This was utterly shocking. An object at rest contained energy in the absence
of outside fields or forces, and that energy E had the quantity mc2. Never
before had it occurred to anyone that mass could somehow store energy, and
yet it seemed apparent that mass was some form of condensed, solidified energy.
This revelation is the one that led to nuclear power. It was so unexpected
that Einstein himself discussed it tangentially in his paper, deviating from the
calculation he worked on to make a special point of describing it. It is also one
of the primary examples of serendipitous discovery in the sciences: who would
have believed that nuclear energy would have been discovered by examining
momentum in a universe with a speed limit?

4 Newtonian Calculations

To better prepare the contrast between Newtonian calculations and relativistic
calculations, we shall review the Newtonian formulae of mechanics and show
how they are derived.

4.1 Force

The expression for force is one of the few axiomatic formulae in classical me-
chanics. As an axiomatic formula, it has no derivation; it is simply believed to
be true. Newton proposed force as the product of inertia and acceleration. He
soon proposed that an object’s mass was identical to its inertia, resulting in the
formula

F = ma = m
dv

dt
= m

d2x

dt2

Much of the rest of mechanics are drawn from these formula.
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4.2 Momentum

Momentum was proposed through the relationship

F =
dp

dt

In other words, force causes an object to change momentum over time. In
cases in which the mass of the accelerated object remains constant, this reduces
simply though an integral to

p =

∫
dp =

∫
Fdt =

∫
m
dv

dt
dt =

∫
mdv = mv

which is the version people are most accustomed to seeing. In cases with vari-
able mass, such as any self-propelled, fuel burning object, the final expression
becomes more complicated, but it is still based on integrating the applied force
over time.

4.3 Energy

Energy E is defined scientifically as the ability to do work W , or to change the
state of motion of an object. There are two types of energy, primarily defined
through the concepts of force and work. The two forms are kinetic and potential
energy, and kinetic energy is the easiest to derive. Both are based on the idea
that

W = ∆E =

∫
F · dx

In other words, applying a force in the direction of motion of an object
changes its state of motion and does work, changing its energy.

4.3.1 Kinetic Energy

The kinetic energy derivation is the simplest to do in many ways. Again, the
familiar form is based on the idea that the mass (or inertia) of an object remains
constant during the motion of the body. If an object starts with zero energy
and is accelerated to velocity v, then the kinetic energy Ek is given by

Ek =

∫
F · dx =

∫
m
dv

dt
· dx =

∫
mdv · dx

dt
=

∫
mdv · v =

1

2
mv2

which is the familiar form.
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4.3.2 Potential Energy

Potential energy is a bit more difficult to recognize. Imagine you ride an elevator
up three floors in a building. We know energy is being applied, even through
the middle portion of the ride which is at a constant speed, as the elevator
car continues to climb and consume electrical power. The net change in speed,
however, is zero: you were motionless before the elevator started to climb, and
you were motionless when you reached the top. This is a sign that your potential
energy has changed: were you to step into the elevator shaft when no elevator
was present, gravity would quickly cause you to accelerate to ground level.
Similar situations can be developed when charged particles are close to each
other, or magnets are close to each other, and so forth. Any time one might
experience a force of some kind, there is a potential involved.

One of the most common potentials we face is gravity. In the case of first
exposure to this force, we tend to work with problems at or near the surface of
the planet Earth, where the acceleration due to gravity is given by g = 9.81m/s2

in the downward direction.4 This value of g remains fairly constant near the
planet’s surface. Because of this near constancy, we can calculate the potential
energy of an object a height h from the planet’s surface by examining the action
of the force of gravity as the object falls.

∆Ep =

∫
F · dx =

∫
mg · dx =

∫ 0m

h

mgdz = −mgh

This is almost the familiar form. The negative sign appears because this
calculation represents the change in potential energy as an object drops from a
height h to ground level; the object has lost mgh worth of potential energy. By
convention, ground level is taken to be the point at which potential energy is
zero, so this means the object had a positive mgh worth of energy when it was
still at height h. Thus,

Ep = mgh

is the familiar expression for an object at height h above the Earth’s surface.
This works for the balls dropped off bridges and buildings in most introductory
problems, but doesn’t work very well for objects in orbit. With distances that
great, g cannot be treated as a constant. In those cases, we work with the full
gravitational force expression

Fg =
Gm1m2

r2

where m1 and m2 are the masses of the two objects involved, G = 6.67 ×
10−11Nm2/s2 is Newton’s gravitational constant, and r is the distance between

4In fact, when one tries to come up with a scientific definition of the word “down,” one is
forced to define it as the direction that the force of gravity points.

7



the centres of mass of the two objects. Integrating over r results in the expression

Ep =

∫
Fg · dr =

∫
Gm1m2

r2
dr = −Gm1m2

r

The negative sign appears because of a convention that results from some-
thing known as gauge freedom. When doing these experiments, we often decide
arbitrarily where the point of zero height is in our apparatus. When dropping
things in a lab, it is convenient to choose the floor, the lab bench, or whatever
other target we are using as the point of zero energy. We do this no matter
which floor of the building we are on, knowing full well that the object we drop
could continue to build up kinetic energy if we were to drop it down the stairs
or into a floor drain instead. We have the freedom to set the “zero” of our gauge
to whatever level is most convenient; the integral definition we use emphasizes
the fact that it is the change in position that is important, and not the posi-
tion itself. So, where is our zero energy point when dealing with situations too
big to fit in a lab room, such as an orbiting satellite? We set the zero energy
point at infinity, making potential energies negative as one object accelerates
and approaches the other object.5 This also means that an object that starts
at rest at infinity and falls towards the other body arrives with kinetic and po-
tential energies that still add up to zero, so that Ek = −Ep, which makes other
calculations convenient.

Of course, further expressions could be developed for other forces. For ex-
ample, a complete electromagnetic potential could be developed by integrating
the Lorentz force law:

Ep =

∫
q (E + v ×B) dx

but these are not directly related to what is coming next.

5 Relativistic Calculations

5.1 Time Derivatives and Invariants

In order to work effectively in relativity, we need to ensure that our four vectors
are Lorentz invariant. We have established for our position four-vector already,
but we still need to confirm this for our four dimensional velocity and its timelike
component.

5Technically, both accelerate towards each other, but in most real life problems, we typically
treat the planet or star as an object at a fixed point in space and the satellite as moving. The
motion of the planet or star is generally too small to be measured or relevant.
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Let us begin with the instinctive option:

~u′ =
d~x′

dt′
=

d

dt′


ct′

x′

y′

z′

 =
d

dt′


γ
(
ct− v

cx
)

γ (x− vt)
uy
uz

 =


c

ux−v
1−uxv

c2

uy
uz



Comparing this to

~u =
d~x

dt
=


c
ux
uy
uz


we see that this is only invariant when

ux =
ux − v
1− uxv

c2

which can be manipulated to the point

vu2x = vc2

This is true in only two situations. If v = 0, this is true, but hardly useful; that
means S and S′ are the same reference frame. If v 6= 0, then we have ux = ±c,
which is hardly useful in general situations. Thus, our instinct for an invariant
four-vector fails us, and we need to use another option.

The problem lies in the definition’s right hand side d~x′

dt′ . The numerator
is the differential of an invariant quantity, while the denominator is not. To
correct this, we need to differentiate with respect to another invariant quantity.
Thankfully, this was introduced in the previous lesson, though it did not seem
that significant at the time.

With most time derivatives, one must differentiate with respect to the proper
time, and not the observer’s time, when performing calculations. In essence, we
are treating the S′ frame as the reference frame in which the moving body is at
rest. In short, we are setting ~v = ~u and using this as our reference. With this
definition,

c2τ2 = −c2t2 + x2 + y2 + z2

is an invariant quantity. When the object is at rest, we find

dτ = dt

√
1− u2

c2
=

dt

γ (u)

which is, essentially, our time dilation equation for u = v.
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This leads us to the four vector definition

~u =
d~x

dτ
==

d~x

dt

dt

dτ
= γ (u)


c
ux
uy
uz



Now we calculate ~u · ~u to test invariance, noting that v = u:

~u · ~u = γ
(
c ux uy uz

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 γ


c
ux
uy
uz


= γ2

(
−c2 + u2x + u2y + u2z

)
=
−c2 + u2

1− u2

c2

= −c2
1− u2

c2

1− u2

c2

= −c2

The final result for this quantity is independent of any information about ~u
in any way. Thus, invariance results.

When acceleration is involved, things are sadly more complicated. Invariance
is true when dealing with an inertial reference frame. We cannot use the S′ frame
as the rest frame for an accelerated object, as this is not an inertial reference
frame. The very nature of acceleration shows this to be the case, making any
hope of invariance rather slim. Thus, we define the acceleration as

~a =
d~u

dτ
=
d2~x

dτ2

with little hope of an invariant quantity. In fact,

~a =
d~u

dτ
=
d~u

dt

dt

dτ
= γ

d~u

dt
= γ2


uaγ
c

ux
uaγ2

c2 + ax

uy
uaγ2

c2 + ay

uz
uaγ2

c2 + az



If we look specifically at the rest frame of the object in the exact moment
the acceleration is first applied, we find that u = 0 and a = α, which we can
refer to as the proper acceleration, or the acceleration at measured by the object
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at rest. In this frame,

~a =


0
αx
αy
αz


As it turns out, this leads to an invariant quantity:

~a · ~a = ~a′ · ~a′ = α2

Thus, even though it seemed unlikely that we’d reach an invariant, we have,
further justifying our use of dτ as the preferred time differential for relativity.

5.2 Force

The relativistic force is relatively easy to compute. As with Newtonian mechan-
ics, it is the product of mass and acceleration. We define the four-vector force
as the four-vector acceleration multiplied by the mass of the object:

~F = m0~a = m0
d~u

dτ

The subscript on the mass m0 is there because we will soon find that mass
and inertia are not identical as was believed in Newton’s day. This form also
assumes that mass is constant, which is not necessarily the case. The invariance
of this form is relatively simple to establish: ~F · ~F = m2

0~a · ~a = m2
0α

2, which is
invariant.

In the case in which the mass is variable, the new form becomes

~F =
d (m0~u)

dτ

5.3 Momentum

Now that we have

~F =
d (m0~u)

dτ

for our force, we can build our momentum in an analogous fashion to the way
we did in the Newtonian view. In that case,

~F =
d (m0~u)

dτ
=
d~p

dτ
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Thus,

~p =

∫
~Fdτ =

∫
d (m0~u)

dτ
dτ =

∫
d (m0~u) = m0~u

which probably would have been our instinctive choice to begin with.

Now, doing this with algebra is all well and good, but what do the com-
ponents mean? The spatial components of ~p are easy enough to interpret, but
now we have a time component as well. What is the natural analogue to this
component?

Let us examine this four-vector explicitly.

~p =


γm0c
γm0ux
γm0uy
γm0uz



When the object is at rest and u = 0m/s, we are left with

~p =


m0c

0
0
0


We see that the time component is the mass of the object multiplied by the

speed of light, but what does that mean? This is some sort of “momentum
through time,” but what is a momentum through time? The quantity must be
important in some way, as we find that the invariant length of our momentum
vector is closely related:

~p · ~p = −m2
0c

2

So, this combination of mass and the speed of light must be important, but
we need to see why that is.

5.4 Energy

In the three dimensional world, we knew that

F =
dp

dt

and

F =
dE

dx
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If the same relationships hold in relativistic mechanics, then we would have
something analogous to

dp

dt
=
dE

dx

to relate the two quantities. Dealing with this in four dimensional space, we
have

E =

∫
d~p · d~x

dτ
=

∫
~u · d~p

In the case when u = 0m/s, we are left only with the time components of
these vectors:

E = m0c
2

which may be the single most famous equation in the history of science. Fur-
thermore, this is a natural occurrence of the time component of momentum.
Our “momentum through time” is nothing more than the energy of the object
divided by the speed of light. Even more surprisingly, objects at rest with no
potential energy still have energy by virtue of mass! Performing the calculation
in the general form gives us that

E = γm0c
2 = mc2

where
m = γm0

is the inertia of the object in motion. Thus, energy and inertia are revealed to
be closely related aspects of the same quantity. It was this discovery, coupled
with quantum mechanics, that led to the development of nuclear technology.

5.4.1 Kinetic Energy

If the energy of an object at rest is

E = m0c
2

and the total energy of an object in motion (with no potential energy) is given
by

E = γm0c
2

then it stands to reason that the kinetic energy of an object is the difference
between these two:

Ek = γm0c
2 −m0c

2 = m0c
2

 1√
1−

(
u
c

)2 − 1


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This looks nothing at all like the familiar

Ek =
1

2
mv2

of the Newtonian world that works so well in the high school lab. How can it
possibly be correct?

Those who have taken calculus may be familiar with Taylor series expansions.
The basic concept is that any continuous function with continuous derivatives
can be approximated by a (possibly infinite) polynomial. If one takes the rel-
ativistic kinetic equation above and applies this technique, one finds that the
infinite approximating polynomial begins

Ek =
1

2
m0u

2 +
3

8
m0

u4

c2
+ . . .

The first time is the formula we are used to. The next term is one that is
divided by c2, which is no small number. In fact, each term is of the form

p

q
m0

uk+2

ck

where k, p and q are all whole numbers with p < q. As a result, when u � c,
the relativistic nature of the inertia is difficult to detect, and the Newtonian
form is an excellent approximation.

It is also worth noting that the relativistic kinetic energy formula derived
here is one that allows for unlimited energy, but contains an implicit speed limit.

5.4.2 Potential Energy

When objects have a significant amount of potential energy, they tend to expe-
rience a variety of accelerations. Most potential energy formulae are virtually
unchanged (aside from the replacement of mass with inertia). These will be
developed more fully in lessons seven through nine.
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