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1 Expanding Horizons

We have now seen complex numbers, which are named for the original meaning
of “complex,” or having multiple parts. That prepares us to talk in general
about a broader scope of mathematical objects, where our variables such as x
may refer to more than a simple number. We have used some of these previously
in examples, such as matrices, but this is the first time we’ll put them into
formalisms that are used as the foundation for future results. With our notion of
mathematical objects broadened in such a way, we can start to move towards n-
tuples, vectors, matrices, one-forms, operators and other more advanced objects.
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2 n-tuples

The first of the objects we will define is an n-tuple. This is the most general
form of a class of objects which includes vectors, matrices and one-forms. The
idea of an n-tuple is not particularly different from the idea of a set. Sets,
defined way back in our second lesson, are collections of any objects and have
no intrinsic order. An n-tuple is a collection of elements drawn from a single
set which is organized in a particular order. For example, {Spider-Man, 5} and
{5, Spider-Man} are identical sets. These elements cannot be used to populate
a single n-tuple, as Spider-Man and 5 are not the same types of mathematical
objects. 4 and 5 are the same types of objects, but the n-tuples (4, 5) and (5, 4)
are distinct objects because the order of the entries matters. (Note that we use
the round brackets () for n-tuples to make them appear distinct from the sets
which use {} for their markers.) These examples are 2-tuples, as they contain
2 elements. (1, 2, 3) is a 3-tuple, and u = (u1, u2, u3, . . . , un) is an n-tuple.

3 Vectors and One-Forms

n-tuples are all well and good, but what can we do with them? Well, frankly,
very little until we define operations that govern them. One type of n-tuple is
a vector. The definition of a vector that we typically see first is that specific to
its definition in high school physics classes: vectors are objects which include
both magnitude and direction. This is a perfectly valid, but somewhat lim-
ited definition, designed for a specific application. We will use a more general
definition, which is good, because we are still a long way from graphing and
connecting these objects to geometry, thereby defining the term “direction” in
a mathematical sense. Vectors will be denoted by an arrow above the letter,
such as ~u = (u1, u2, u3, . . . , un). The elements of a vector may be real numbers,
complex numbers, or any other set of numbers such that 1 and 0 are elements of
the set and the set is a ring (or field, or...) under addition and multiplication.

First, we define a few operations and standard objects:

1. Zero vector: ~0 = (0, 0, 0, 0, . . . , 0)

2. Negative vector: if ~u = (u1, u2, u3, . . . , un), then −~u =
(−u1,−u2,−u3, . . . ,−un).

3. Addition: ~u = (u1, u2, u3, . . . , un) + ~v = (v1, v2, v3, . . . , vn) =
(u1 + v1, u2 + v2, u3 + v3, . . . , un + vn)

4. Subtraction: ~u− ~v = ~u + (−~v).
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5. Scalar multiplication: a~u = (au1, au2, au3, . . . , aun) where a is a member
of the same set as the various ui.

If the above definitions hold, then the objects we are dealing with are either
vectors or one-forms. The distinction between vectors and one-forms will not
come for quite some time, as it depends on products of vectors, which we have
yet to define. One important distinction is in the way they are written outside
of a comma separated list. Vectors, when written without commas, are written
as columns:

~u =


u1

u2

u3

...
un


Conversely, one-forms are denoted with a tilde above instead of an arrow

(ũ = (u1, u2, u3, . . . , un)) and are written as rows:

ũ =
(
u1 u2 u3 · · · un

)
Each vector has an associated one-form, and vice versa.

Our vectors ~u = (u1, u2, u3, . . . , un) , ui ∈ S can form a vector space V if the
following axioms are true:

1. ~u,~v ∈ V ⇒ ~u + ~v ∈ V

2. ~u ∈ V, a ∈ S ⇒ a~u ∈ V

3. ~u,~v ∈ V ⇒ ~u + ~v = ~v + ~u

4. ~u,~v, ~w ∈ V ⇒ ~u + (~v + ~w) = (~u + ~v) + ~w

5. a, b ∈ S, ~u ∈ V ⇒ a (b~u) = (ab) ~u.

6. ~u ∈ V ⇒ ~0 + ~u = ~u

7. ~u ∈ V ⇒ 1~u = ~u

8. ~u ∈ V ⇒ −~u ∈ V, ~u + (−~u) = ~0

9. a ∈ S, ~u,~v ∈ V ⇒ a (~u + ~v) = a~u + a~v

10. a, b ∈ S, ~u ∈ V ⇒ (a + b) ~u = a~u + b~u
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Note that rules 1 and 2 are closure axioms, 3 is a commutative axiom, 4 and
5 are associativity axioms, 6 and 7 are identity axioms, 8 is an inverse axiom
and 9 and 10 are distributive property axioms. Note that none of these involve
multiplying vectors by other vectors.

4 Inner Products and Inner Product Spaces

There are multiple definitions of vector products available which we will (eventu-
ally) see, but the one that is the most useful now is the inner product, denoted
〈~u,~v〉. The inner product is not a single product, but rather an entire class
of products which satisfy the following properties, assuming ~u,~v, ~w ∈ V and
a, ui, vi, wi ∈ S:

1. 〈~u,~v〉 ∈ S

2. 〈~u,~v〉 = 〈~v, ~u〉∗

3. 〈~u + ~w,~v〉 = 〈~u,~v〉+ 〈~w,~v〉

4. 〈a~u,~v〉 = a 〈~u,~v〉 = 〈~u, a∗~v〉

5. 〈~u, ~u〉 > 0∀~u 6= ~0

Note that rule 2 reduces to symmetry if S is not the complex number field
(or other similar fields we have yet to define) as the complex conjugate will be

the same as the original number. Note also that
〈
~0,~0
〉

= 0 is not an explicit

requirement here. That’s because it is an implicit requirement; we simply apply
property 3 to find that〈

~u,~0
〉

=
〈
~u,~0 +~0

〉
=
〈
~u,~0
〉

+
〈
~u,~0
〉

= 2
〈
~u,~0
〉

Thus,
〈
~u,~0
〉

= 2
〈
~u,~0
〉

, or
〈
~u,~0
〉

= 0.

We will conclude this month with an example of the most common inner
product: the dot product. The dot product of two vectors, also known as the
scalar product, is defined as follows:

〈~u,~v〉 = ~u · ~v =

n∑
i=1

uiv
∗
i

We now verify that this is, indeed, an inner product. To do this in the most
general form, we will use S = C. In the event that S = R, all of our results
involving complex conjugates reduce to more simple cases. Let us test these
results explicitly.
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4.1 〈~u,~v〉 ∈ S

For ~u = (u1, u2, u3, . . . , un) and ~v = (v1, v2, v3, . . . , vn), we have

~u · ~v =

n∑
i=1

uiv
∗
i ∈ C

by virtue of the fact that C is closed under conjugation, addition and multipli-
cation.

4.2 〈~u,~v〉 = 〈~v, ~u〉∗

Let uj = aj + ibj and vj = cj + idj , where we have replaced the index variable
i with j to avoid confusion between the index and

√
−1.

〈~u,~v〉 =

n∑
j=1

u∗
jvj

=

n∑
j=1

(aj + ibj) (cj + idj)
∗

=

n∑
j=1

(aj + ibj) (cj − idj)

=

n∑
j=1

ajcj + ibjcj − iajdj + bjdj

=

n∑
j=1

(ajcj + ibjcj − iajdj + bjdj)
∗

=

n∑
j=1

((cj + idj) (aj − ibj))
∗

=

n∑
j=1

(
(cj + idj) (aj + ibj)

∗)∗
= 〈~v, ~u〉∗

So, the second condition is satisfied for C. For R, simply set bj = dj = 0
and get the same result.
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4.3 〈~u+ ~w,~v〉 = 〈~u,~v〉+ 〈~w,~v〉

Use the same definitions as above, and add wj = ej + ifj .

〈~u + ~w,~v〉 =

n∑
j=1

(uj + wj) v
∗
j

=

n∑
j=1

ujv
∗
j + wjvj

∗

= 〈~u,~v〉+ 〈~w,~v〉

4.4 〈k~u,~v〉 = k 〈~u,~v〉 = 〈~u, k∗~v〉

If uj = aj + ibj , vj = cj + idj and k = m + in, then

〈k~u,~v〉 =

n∑
j=1

(m + in)ujvj
∗

= (m + in)

n∑
j=1

ujv
∗
j

= k 〈~u,~v〉

=

n∑
j=1

ujkv
∗
j

=

n∑
j=1

uj (k∗vj)
∗

= 〈~u, k∗~v〉

where we have used the fact that (k∗)
∗

= k.

4.5 〈~u, ~u〉 > 0∀~u 6= ~0

〈~u, ~u〉 =

n∑
j=1

uju
∗
j

=

n∑
j=1

|uj |2

≥ 0
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From our previous definition, we see that |uj |2 = 0 ⇔ uj = 0, so this
property holds. That is the fifth and final property, so the dot or scalar product
is an inner product.

5 Next Lesson

Now that we are armed with inner products and inner product spaces, we can
venture towards graphs and graphing.
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